Accès libre

Investigation of the Effects of Artemisinin on Testis and Kidney Injury Induced by Doxorubicin

À propos de cet article

Citez

1. Olson RD, Mushlin PS, Brenner DE, Fleischer S, Cusack BJ, Chang BK, Boucek RJ: Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proc Natl Acad Sci U S A 1988, 85:3585-3589.10.1073/pnas.85.10.35852802582897122Search in Google Scholar

2. Warpe VS, Mali VR, Arulmozhi S, Bodhankar SL, Mahadik KR: Cardioprotective effect of ellagic acid on doxorubicin induced cardiotoxicity in wistar rats. J Acute Med 2015, 5:1-8.10.1016/j.jacme.2015.02.003Search in Google Scholar

3. Gorini S, De Angelis A, Berrino L, Malara N, Rosano G, Ferraro E: Chemotherapeutic drugs and mitochondrial dysfunction: Focus on doxorubicin, trastuzumab, and sunitinib. Oxid Med Cell Longev 2018, 758273010.1155/2018/7582730587887629743983Search in Google Scholar

4. Singal PK, Iliskovic N: Doxorubicin-induced cardiomyopathy. N Engl J Med 1998, 339:900-905.10.1056/NEJM1998092433913079744975Search in Google Scholar

5. Childs AC, Phaneuf SL, Dirks AJ, Phillips T, Leeuwenburgh C: Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2: Bax ratio. Cancer Res 2002, 62:4592-4598.Search in Google Scholar

6. McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM: Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther 2017, 31:63-75.10.1007/s10557-016-6711-0534659828185035Search in Google Scholar

7. Zilinyi R, Czompa A, Czegledi A, Gajtko A, Pituk D, Lekli I, Tosaki A: The cardioprotective effect of metformin in doxorubicin-induced cardiotoxicity: The Role of Autophagy. Molecules 2018, 23:1184.10.3390/molecules23051184610006129762537Search in Google Scholar

8. Kalender Y, Yel M, Kalender S: Doxorubicin hepatotoxicity and hepatic free radical metabolism in rats: the effects of vitamin E and catechin. Toxicology 2005, 209:39-45.10.1016/j.tox.2004.12.00315725512Search in Google Scholar

9. Mostafa MG, Mima T, Ohnishi ST, Mori K: S-allylcysteine ameliorates doxorubicin toxicity in the heart and liver in mice. Planta Med 2000, 66:148-151.10.1055/s-2000-1112410763589Search in Google Scholar

10. Ayla S, Seckin I, Tanriverdi G, Cengiz M, Eser M, Soner BC, Oktem G: Doxorubicin induced nephrotoxicity: protective effect of nicotinamide. Int J. Cell Biol 2011, 201110.1155/2011/390238314077721789041Search in Google Scholar

11. Siswanto S, Arozal W, Juniantito V, Grace A, Agustini FD: The effect of mangiferin against brain damage caused by oxidative stress and inflammation induced by doxorubicin. HAYATI J Biosci 2016, 23:51-55.10.1016/j.hjb.2016.02.001Search in Google Scholar

12. Srdjenovic B, Milic-Torres V, Grujic N, Stankov K, Djordjevic A, Vasovic V: Antioxidant properties of fullerenol C60 (OH) 24 in rat kidneys, testes, and lungs treated with doxorubicin. Toxicol Mech Method 2010, 20:298-305.10.3109/15376516.2010.48562220491520Search in Google Scholar

13. Divya S, Madhuri D, Lakshman M, Reddy AG: Pathological and ultra-structural changes in testis of rats due to doxorubicin toxicity and its amelioration with quercetin. Int. J. Curr. Microbiol. App. Sci 2017, 6:2295-2306.10.20546/ijcmas.2017.607.330Search in Google Scholar

14. Vapa I, Torres VM, Djordjevic A, Vasovic V, Srdjenovic B, Simic VD, Popović JK: Effect of fullerenol C 60 (OH) 24 on lipid peroxidation of kidneys, testes and lungs in rats treated with doxorubicine. Eur J Drug Metab Pharmacokinet 2012, 37:301-307.10.1007/s13318-012-0092-y22527972Search in Google Scholar

15. Bilir EK, Tutun H, Sevin S, Kismali G, Yarsan E: Cytotoxic Effects of rhododendron ponticum l. extract on prostate carcinoma and adenocarcinoma cell line (DU145, PC3). Kafkas Univ Vet Fak Derg 2018, 24:451-457.10.9775/kvfd.2017.19219Search in Google Scholar

16. Keyvan E, Tutun H: Effects of carvacrol on Staphyloccus aureus isolated from bulk tank milk. Med Weter 2019, 75: 238-241.10.21521/mw.6211Search in Google Scholar

17. Shin SA, Moon S, Kim WY, Paek SM, Park H, Lee C: Structure-based classification and anti-cancer effects of plant metabolites. Int J Mol Sci 2018, 19: 2651.10.3390/ijms19092651616373530200668Search in Google Scholar

18. Tutun H, Koç N, Kart A: Plant essential oils used against some bee diseases. TURJAF 2018, 6:34-45.10.24925/turjaf.v6i1.34-45.1502Search in Google Scholar

19. Liao F: Discovery of artemisinin (qinghaosu). Molecules 2009, 14:5362-5366.10.3390/molecules14125362Search in Google Scholar

20. Abdin MZ, Alam P: Genetic engineering of artemisinin biosynthesis: prospects to improve its production. Acta Physiol Plant 2015, 37:33.10.1007/s11738-015-1771-5Search in Google Scholar

21. Zyad A, Tilaoui M, Jaafari A, Oukerrou MA, Mouse HA: More insights into the pharmacological effects of artemisinin. Phytother Res 2018, 32:216-229.10.1002/ptr.595829193409Search in Google Scholar

22. Crespo-Ortiz MP, Wei MQ: Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. J Biomed Biotechnol 2011, 2012:24759710.1155/2012/247597Search in Google Scholar

23. Wang XM, Zhang L, Ding GF, Wang QZ: Inhibitory effect of dihydroartemisinin on the growth of human prostate cancer PC-3M cells and its mechanism. Zhonghua Nan Ke Xue 2012, 18:590-594.Search in Google Scholar

24. Chou S, Marousek G, Auerochs S, Stamminger T, Milbradt J, Marschall M: The unique antiviral activity of artesunate is broadly effective against human cytomegaloviruses including therapy-resistant mutants. Antiviral Res 2011, 92:364-368.10.1016/j.antiviral.2011.07.018Search in Google Scholar

25. Gautam P, Upadhyay SK, Hassan W, Madan T, Sirdeshmukh R, Sundaram CS, Gade WN, Basir SF, Singh Y, Sarma PU: Transcriptomic and proteomic profile of Aspergillus fumigatus on exposure to artemisinin. Mycopathologia 2011, 172:331-4610.1007/s11046-011-9445-3Search in Google Scholar

26. Schultz TL, Hencken CP, Woodard LE, Posner GH, Yolken RH, Jones-Brando L, Carruthers VB: A thiazole derivative of artemisinin moderately reduces Toxoplasma gondii cyst burden in infected mice. J Parasitol 2014, 100:516-521.10.1645/13-451.1Search in Google Scholar

27. Want MY, Islamuddin M, Chouhan G, Ozbak HA, Hemeg HA, Dasgupta AK, Chattopadhyay AP, Afrin F: Therapeutic efficacy of artemisinin-loaded nanoparticles in experimental visceral leishmaniasis. Colloids Surf B Biointerfaces 2015, 130:215-221.10.1016/j.colsurfb.2015.04.013Search in Google Scholar

28. Wang KS, Li J, Wang Z, Mi C, Ma J, Piao LX, Xu GH, Li X, Jin, X: Artemisinin inhibits inflammatory response via regulating NF-κB and MAPK signaling pathways. Immunopharmacol Immunotoxicol 2017, 39:28-36.10.1080/08923973.2016.1267744Search in Google Scholar

29. Juteau F, Masotti V, Bessiere JM, Dherbomez M, Viano J: Antibacterial and antioxidant activities of Artemisia annua essential oil. Fitoterapia 2002, 73: 532-535.10.1016/S0367-326X(02)00175-2Search in Google Scholar

30. O’Neill PM, Barton VE, Ward SA. The molecular mechanism of action of artemisinin-the debate continues. Molecules 2010; 15:1705–1721.10.3390/molecules15031705625735720336009Search in Google Scholar

31. Gu Y, Wang X, Wang X, Yuan M, Wu G, Hu J, Tang Y, Huang, C: Artemisinin attenuates post-infarct myocardial remodeling by down-regulating the NF-κB pathway. Tohoku J Exp Med 2012, 227:161-170.10.1620/tjem.227.16122729178Search in Google Scholar

32. Sun LH, Li HZ, Han LP, Jiang CM, Zhao YJ, Gao XX, Tian Y, Xu CQ: Effect of artemisinin on ischemia/reperfusion injury of isolated rat myocardium. Zhongguo Zhong Yao Za Zhi 2007, 32:1547-1551.Search in Google Scholar

33. Zhao X, Wang L, Zhang H, Zhang D, Zhang Z, Zhang J: Protective effect of artemisinin on chronic alcohol induced-liver damage in mice. Environ Toxicol Pharmacol 2017, 52:221-226.10.1016/j.etap.2017.04.00828448816Search in Google Scholar

34. Pugazhendhi A, Edison TNJI, Velmurugan BK, Jacob JA, Karuppusamy I: Toxicity of Doxorubicin (Dox) to different experimental organ systems. Life sci 2018, 200:26-3010.1016/j.lfs.2018.03.023Search in Google Scholar

35. Shivakumar P, Rani MU, Reddy AG, Anjaneyulu Y: A study on the toxic effects of doxorubicin on the histology of certain organs. Toxicol Int 2012, 19: 241.10.4103/0971-6580.103656Search in Google Scholar

36. Lui RC, Laregina MC, Herbold DR, Johnson FE: Testicular cytotoxicity of intravenous doxorubicin in rats. J Urol 1986, 136:940-943.10.1016/S0022-5347(17)45136-6Search in Google Scholar

37. Green DR, Llambi F: Cell death signaling. Cold Spring Harb Perspect Biol 2015, 7; a006080.10.1101/cshperspect.a006080Search in Google Scholar

38. Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol 2007, 35:495-516.10.1080/01926230701320337Search in Google Scholar

39. McIlwain DR, Berger T, Mak TW: Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 2013, 5:a008656.10.1101/cshperspect.a008656Search in Google Scholar

40. Baud V, Karin M: Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 2001, 11:372-377.10.1016/S0962-8924(01)02064-5Search in Google Scholar

41. Turner MD, Nedjai B, Hurst T, Pennington DJ: Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta Mol Cell Res 2014, 1843:2563-2582.10.1016/j.bbamcr.2014.05.01424892271Search in Google Scholar

42. Fan Y, Dutta J, Gupta N, Fan G, Gélinas C: Regulation of programmed cell death by NF-κB and its role in tumorigenesis and therapy. In Programmed cell death in cancer progression and therapy. Dordrecht: Springer; 2008, 223-25010.1007/978-1-4020-6554-5_1118437897Search in Google Scholar

43. Hatano E: Tumor necrosis factor signaling in hepatocyte apoptosis. J Gastroenterol Hepatol 2007, 22:S43-S44.10.1111/j.1440-1746.2006.04645.x17567463Search in Google Scholar

44. Liu T, Zhang L, Joo D, Sun SC: NF-κB signaling in inflammation. Signal Transduct Target Ther 2017, 2:17023.10.1038/sigtrans.2017.23Search in Google Scholar

45. Lechner M, Lirk P, Rieder J: Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. In Seminars in cancer biology Academic Press; 2005, 15:277-28910.1016/j.semcancer.2005.04.004Search in Google Scholar

46. Džoljić E, Grabatinić I, Kostić V: Why is nitric oxide important for our brain? Funct neurol 2015, 30:159.10.11138/FNeur/2015.30.3.159Search in Google Scholar

47. Kang JK, Lee YJ, No KO, Jung EY, Sung JH, Kim YB, Nam SY: Ginseng intestinal metabolite-I (GIM-I) reduces doxorubicin toxicity in the mouse testis. Reprod Toxicol 2002, 16:291-298.10.1016/S0890-6238(02)00021-7Search in Google Scholar

48. Deman A, Ceyssens B, Pauwels M, Zhang J, Houte KV, Verbeelen D, Van den Branden C: Altered antioxidant defence in a mouse adriamycin model of glomerulosclerosis. Nephrol Dial Transpl 2001, 16:147-150.10.1093/ndt/16.1.14711209009Search in Google Scholar

49. Benzer F, Kandemir FM, Kucukler S, Comaklı S, Caglayan C: Chemoprotective effects of curcumin on doxorubicin-induced nephrotoxicity in wistar rats: by modulating inflammatory cytokines, apoptosis, oxidative stress and oxidative DNA damage. Arch Physiol Biochem 2018, 124:448-457.10.1080/13813455.2017.142276629302997Search in Google Scholar

50. Heravi NE, Hosseinian S, Yazd ZNE, Shafei MN, Bideskan AE, Shahraki S, Noshahr ZS, Motejadded F, Beheshti F, Mohebbati R, Parhizgar S, Rad AK: Doxorubicin-induced renal inflammation in rats: Protective role of Plantago major. Avicenna J Phytomed 2018, 8:179.Search in Google Scholar

51. Rehman MU, Tahir M, Khan AQ, Khan R, Oday-O-Hamiza, Lateef A, Hassan SK, Rashid S, Ali N, Zeeshan M, Sultana S: D-limonene suppresses doxorubicin-induced oxidative stress and inflammation via repression of COX-2, iNOS, and NFκB in kidneys of Wistar rats. Exp Biol Med 2014, 239:465-476.10.1177/153537021352011224586096Search in Google Scholar

52. El-Sheikh AA, Morsy MA, Mahmoud MM, Rifaai RA, Abdelrahman AM: Effect of coenzyme-Q10 on doxorubicin-induced nephrotoxicity in rats. Adv Pharmacol Sci 2012, 2012.10.1155/2012/981461353399523346106Search in Google Scholar

53. Kabel AM: Zinc/alogliptin combination attenuates testicular toxicity induced by doxorubicin in rats: Role of oxidative stress, apoptosis and TGF-β1/NF-κB signaling. Biomed Pharmacother 2018, 97:439-449.10.1016/j.biopha.2017.10.14429091894Search in Google Scholar

54. Magalhães J, Ascensao A, Padrao AI, Aleixo IM, Santos-Alves E, Rocha-Rodrigues S, Ferreira A, Korrodi-Gregorio L, Vitorino R, Ferreira R, Fardilha M: Can exercise training counteract doxorubicin-induced oxidative damage of testis proteome? Toxicol lett 2017, 280:57-69.10.1016/j.toxlet.2017.08.01028818578Search in Google Scholar

eISSN:
1820-7448
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Veterinary Medicine