This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
S. Toldo and A. Abbate, The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases, Nat. Rev. Cardiol. 21 (2024) 219–237; https://doi.org/10.1038/s41569-023-00946-3Search in Google Scholar
S. Toldo, E. Mezzaroma, L. F. Buckley, N. Potere, M. Di Nisio, G. Biondi-Zoccai, B. W. Van Tassell and A. Abbate, Targeting the NLRP3 inflammasome in cardiovascular diseases; Pharmacol. Ther. 236 (2022) Article ID 108053; https://doi.org/10.1016/j.pharmthera.2021.108053Search in Google Scholar
C. Pellegrini, A. Martelli, L. Antonioli, M. Fornai, C. Blandizzi and V. Calderone, NLRP3 inflamma-some in cardiovascular diseases: Pathophysiological and pharmacological implications, Med. Res. Rev. 41(4) (2021) 1890–1926; https://doi.org/10.1002/med.21781Search in Google Scholar
H. Y. Fang, X. N. Zhao, M. Zhang, Y. Y. Ma, J. L. Huang and P. Zhou, Beneficial effects of flavonoids on cardiovascular diseases by influencing NLRP3 inflammasome, Inflammopharmacol. 31 (2023) 1715–1729; https://doi.org/10.1007/s10787-023-01249-2Search in Google Scholar
J. P. Li, S. Qiu, G. J. Tai, Y. M. Liu, W. Wei, M. M. Fu, P. Q. Fang, J. N. Otieno, T. Battulga, X. X. Li and M. Xu, NLRP3 inflammasome-modulated angiogenic function of EPC via PI3K/Akt/mTOR pathway in diabetic myocardial infarction, Cardiovasc. Diabetol. 24 (2025) Article ID 6 (23 pages); https://doi.org/10.1186/s12933-024-02541-3Search in Google Scholar
W. Zhou, C. Chen, Z. Chen, L. Liu, J. Jiang, Z. Wu, M. Zhao and Y. Chen, NLRP3: A novel mediator in cardiovascular disease, J. Immunol. Res. 2018 (2018) Article ID 5702103 (8 pages); https://doi.org/10.1155/2018/5702103Search in Google Scholar
J. Fu and H. Wu, Structural mechanisms of NLRP3 inflammasome assembly and activation, Annu. Rev. Immunol. 41 (2023) 301–316; https://doi.org/10.1146/annurev-immunol-081022-021207Search in Google Scholar
Y. Xie, G. Sun, Y. Tao, W. Zhang, S. Yang, L. Zhang, Y. Lu and G. Du, Current advances on the therapeutic potential of scutellarin: An updated review, Nat. Prod. Bioprospect. 14 (2024) Article ID 20 (15 pages); https://doi.org/10.1007/s13659-024-00441-3Search in Google Scholar
Y. Zhou, C. Gu, Y. Zhu, Y. Zhu, Y. Chen, L. Shi, Y. Yang, X. Lu and H. Pang, Pharmacological effects and the related mechanism of scutellarin on inflammation-related diseases: A review, Front Pharmacol.15 (2024) Article ID 1463140 (15 pages); https://doi.org/10.3389/fphar.2024.1463140Search in Google Scholar
X. Zhang, T. Yin, Y. Wang, J. Du, J. Dou and X. Zhang, Effects of scutellarin on the mechanism of cardiovascular diseases: A review, Front. Pharmacol. 14 (2024) Article ID 1329969 (19 pages); https://doi.org/10.3389/fphar.2023.1329969Search in Google Scholar
L. J. Xu, R. C. Chen, X. Y. Ma, Y. Zhu, G. B. Sun and X. B. Sun, Scutellarin protects against myocar-dial ischemia-reperfusion injury by suppressing NLRP3 inflammasome activation, Phytomedicine68 (2020) Article ID Article ID 153169 (11 pages); https://doi.org/10.1016/j.phymed.2020.153169Search in Google Scholar
H. Sharif, L. Wang, W. L. Wang, V. G. Magupalli, L. Andreeva, Q. Qiao, A. V. Hauenstein, Z. Wu, G. Núñez, Y. Mao and H. Wu, Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome, Nature570 (2019) 338–343; https://doi.org/10.1038/s41586-019-1295-zSearch in Google Scholar
B. T. Fahr, T. O’Brien, P. Pham, N. D. Waal, S. Baskaran, B. C. Raimundo, J. W. Lam, M. M. Sopko, H. E. Purkey and M. J. Romanowski, Tethering identifies fragment that yields potent inhibitors of human caspase-1, Bioorg. Med. Chem. Lett. 16(3) (2006) 559–562; https://doi.org/10.1016/j.bmcl.2005.10.048Search in Google Scholar
S. Kuang, J. Zheng, H. Yang, S. Li, S. Duan, Y. Shen, C. Ji, J. Gan, X. W. Xu and J. Li, Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis, Proc. Natl. Acad. Sci. USA114(40) (2017) 10642–10647. https://doi.org/10.1073/pnas.1708194114Search in Google Scholar
Y. Liu, X. Yang, J. Gan, S. Chen, Z. X. Xiao and Y. Cao, CB-Dock2: Improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting, Nucleic Acids Res. 50(W1) (2022) W159-W164; https://doi.org/10.1093/nar/gkac394Search in Google Scholar
X. N. Zhao, H. M. Ding, Y. Y. Ma, L. Wang and P. Zhou, Ling-Gui-Zhu-Gan decoction inhibits cardiomyocyte pyroptosis via the NLRP3/Caspase-1 signaling pathway, Tissue Cell. 91 (2024) Article ID 102588; https://doi.org/10.1016/j.tice.2024.102588Search in Google Scholar
X. Chen, Y. Li, J. Li, T. Liu, Q. Jiang, Y. Hong, Q. Wang, C. Li, D. Guo and Y. Wang, Qishen granule (QSG) exerts cardioprotective effects by inhibiting NLRP3 inflammasome and pyroptosis in myocardial infarction rats, J. Ethnopharmacol. 285 (2025) Article ID 114841; https://doi.org/10.1016/j.jep.2021.114841Search in Google Scholar
Y. Qiu, Y. Huang, M. Chen, Y. Yang, X. Li and W. Zhang, Mitochondrial DNA in NLRP3 inflamma-some activation, Int. Immunopharmacol. 108 (2022) Article ID 108719; https://doi.org/10.1016/j.intimp.2022.108719Search in Google Scholar
N. Kelley, D. Jeltema, Y. Duan and Y. He, The NLRP3 inflammasome: An overview of mechanisms of activation and regulation, Int. J. Mol. Sci. 20(13) (2019) Article ID 3328 (24 pages); https://doi.org/10.3390/ijms20133328Search in Google Scholar
Y. Huang, W. Xu and R. Zhou, NLRP3 inflammasome activation and cell death, Cell Mol. Immunol. 18 (2021) 2114–2127; https://doi.org/10.1038/s41423-021-00740-6Search in Google Scholar
A. Rauf, M. Shah, D. M. Yellon and S. M. Davidson, Role of caspase 1 in ischemia/reperfusion injury of the myocardium, J. Cardiovasc. Pharmacol. 74(3) (2019) 194–200; https://doi.org/10.1097/FJC.0000000000000694Search in Google Scholar
B. Zhang, G. Liu, B. Huang, H. Liu, H. Jiang, Z. Hu and J. Chen, KDM3A attenuates myocardial ischemic and reperfusion injury by ameliorating cardiac microvascular endothelial cell pyroptosis, Oxid. Med. Cell Longev. 2022 (2022) Article ID 4622520 (19 pages); https://doi.org/10.1155/2022/4622520Search in Google Scholar
S. Toldo and A. Abbate, The NLRP3 inflammasome in acute myocardial infarction, Nat. Rev. Cardiol.15 (2018) 203–214; https://doi.org/10.1038/nrcardio.2017.161Search in Google Scholar
Y. S. Tang, Y. H. Zhao, Y. Zhong, X. Z. Li, J. X. Pu, Y. C. Luo and Q. L. Zhou, Neferine inhibits LPS-ATP-induced endothelial cell pyroptosis via regulation of ROS/NLRP3/Caspase-1 signaling pathway, Inflamm. Res. 68 (2019) 727–738. https://doi.org/10.1007/s00011-019-01256-6Search in Google Scholar
E. L. Johnston, B. Heras, T. A. Kufer and M. Kaparakis-Liaskos, Detection of bacterial membrane vesicles by NOD-like receptors, Int. J. Mol. Sci. 22(3) (2021) Article ID 1005 (14 pages); https://doi.org/10.3390/ijms22031005Search in Google Scholar
H. Kong, H. Zhao, T. Chen, Y. Song and Y. Cui, Targeted P2X7/NLRP3 signaling pathway against inflammation, apoptosis, and pyroptosis of retinal endothelial cells in diabetic retinopathy, Cell Death Dis. 13 (2022) Article ID 336 (13 pages); https://doi.org/10.1038/s41419-022-04786-wSearch in Google Scholar
S. Nie, S. Zhang, R. Wu, Y. Zhao, Y. Wang, X. Wang, M. Zhu and P. Huang, Scutellarin: Pharmacological effects and therapeutic mechanisms in chronic diseases, Front Pharmacol. 15 (2024) Article ID 1470879 (23 pages); https://doi.org/10.3389/fphar.2024.1470879Search in Google Scholar
J. K. Li, Z. P. Song and X. Z. Hou, Scutellarin ameliorates ischemia/reperfusion injury-induced cardiomyocyte apoptosis and cardiac dysfunction via inhibition of the cGAS-STING pathway, Exp. Ther. Med. 25(4) (2023) Article ID 155 (9 pages); https://doi.org/10.3892/etm.2023.11854Search in Google Scholar
X. Fan, Y. Wang, X. Li, T. Zhong, C. Cheng and Y. Zhang, Scutellarin alleviates liver injury in type 2 diabetic mellitus by suppressing hepatocyte apoptosis in vitro and in vivo, Chin. Herb Med. 15(4) (2023) 542–548; https://doi.org/10.1016/j.chmed.2023.03.007Search in Google Scholar
L. Peng, L. Wen, Q. F. Shi, F. Gao, B. Huang, J. Meng, C. P. Hu and C. M. Wang, Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation, Cell Death Dis. 11 (2020) Article ID 978 (16 pages); https://doi.org/10.1038/s41419-020-03178-2Search in Google Scholar
W. C. Gao, T. H. Yang, B. B. Wang, Q. Liu, Q. Li, Z. H. Zhou, C. B. Zheng and P. Chen, Scutellarin inhibits oleic acid induced vascular smooth muscle foam cell formation via activating autophagy and inhibiting NLRP3 inflammasome activation, Clin. Exp. Pharmacol. Physiol. 51(4) (2024) e13845; https://doi.org/10.1111/1440-1681.13845Search in Google Scholar
Z. Wang, P. Zhang, Y. Zhao, F. Yu, S. Wang, K. Liu, X. Cheng, J. Shi, Q. He, Y. Xia and L. Cheng, Scutellarin protects against mitochondrial reactive oxygen species-dependent NLRP3 inflamma-some activation to attenuate intervertebral disc degeneration, Front. Bioeng. Biotechnol. 10 (2022) Article ID 883118 (17 pages); https://doi.org/10.3389/fbioe.2022.883118Search in Google Scholar
H. T. Bian, G. H. Wang, J. J. Huang, L. Liang, L. Xiao, and H. L. Wang, Scutellarin protects against lipopolysaccharide-induced behavioral deficits by inhibiting neuroinflammation and microglia activation in rats, Int. Immunopharmacol. 88 (2020) Article ID106943 (7 pages); https://doi.org/10.1016/j.intimp.2020.106943Search in Google Scholar