This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
R. S. Harris and J. P. Dudley, APOBECs and virus restriction, Virology479–480 (2015) 131–145; https://doi.org/10.1016/j.virol.2015.03.012Search in Google Scholar
N. Lovšin, B. Gangupam and M. Bergant Marušič, The intricate interplay between APOBEC3 proteins and DNA tumour viruses, Pathogens13(3) (2024) Article ID 187 (19 pages); https://doi.org/10.3390/pathogens13030187Search in Google Scholar
P. Simmonds, Rampant C®U hypermutation in the genomes of SARS-CoV-2 and other corona-viruses: Causes and consequences for their short- and long-term evolutionary trajectories, mSphere5(3) (2020); https://doi.org/10.1128/mSphere.00408-20Search in Google Scholar
S. M. Wang and C. T. Wang, APOBEC3G cytidine deaminase association with coronavirus nucleocapsid protein, Virology388(1) (2009) 112–120; https://doi.org/10.1016/j.virol.2009.03.010Search in Google Scholar
Y. H. Zheng, N. Lovsin and B. M. Peterlin, Newly identified host factors modulate HIV replication, Immunol. Lett.97(2) (2005) 225–234; https://doi.org/10.1016/j.imlet.2004.11.026Search in Google Scholar
Y. L. Chiu and W. C. Greene, The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements, Annu. Rev. Immunol.26 (2008) 317–353; https://doi.org/10.1146/annurev.immunol.26.021607.090350Search in Google Scholar
C. M. Okeoma, N. Lovsin, B. M. Peterlin and S. R. Ross, APOBEC3 inhibits mouse mammary tumour virus replication in vivo, Nature445(7130) (2007) 927–930; https://doi.org/10.1038/nature05540Search in Google Scholar
Y. H. Zheng, D. Irwin, T. Kurosu, K. Tokunaga, T. Sata and B. M. Peterlin, Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication, J. Virol.78(11) (2004) 6073–6076; https://doi.org/10.1128/JVI.78.11.6073-6076.2004Search in Google Scholar
B. Mangeat, P. Turelli, G. Caron, M. Friedli, L. Perrin and D. Trono, Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts, Nature424(6944) (2003) 99–103; https://doi.org/10.1038/nature01709Search in Google Scholar
J. Ratcliff and P. Simmonds, Potential APOBEC-mediated RNA editing of the genomes of SARS--CoV-2 and other coronaviruses and its impact on their longer term evolution, Virology556 (2021) 62–72; https://doi.org/10.1016/j.virol.2020.12.018Search in Google Scholar
N. Lindič, M. Budič, T. Petan, B. A. Knisbacher, E. Y. Levanon and N. Lovšin, Differential inhibition of LINE1 and LINE2 retrotransposition by vertebrate AID/APOBEC proteins, Retrovirology10 (2013) Article ID 156 (16 pages); https://doi.org/10.1186/1742-4690-10-156Search in Google Scholar
S. Sharma, S. K. Patnaik, R. T. Taggart, E. D. Kannisto, S. M. Enriquez, P. Gollnick and B. E. Baysal, APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages, Nat. Commun.6 (2015) Article ID 6881 (15 pages); https://doi.org/10.1038/ncomms7881Search in Google Scholar
P. Simmonds and M. A. Ansari, Extensive C®U transition biases in the genomes of a wide range of mammalian RNA viruses; potential associations with transcriptional mutations, damage- or host-mediated editing of viral RNA, PLoS Pathog.17(6) e1009596 (25 pages); https://doi.org/10.1371/journal.ppat.1009596Search in Google Scholar
R. Pecori, S. Di Giorgio, J. Paulo Lorenzo and F. N. Papavasiliou, Functions and consequences of AID/APOBEC-mediated DNA and RNA deamination, Nat. Rev. Genet.23(8) (2022) 505–518; https://doi.org/10.1038/s41576-022-00459-8Search in Google Scholar
K. Cervantes-Gracia, A. Gramalla-Schmitz, J. Weischedel and R. Chahwan, APOBECs orchestrate genomic and epigenomic editing across health and disease, Trends Genet. 37(11) (2021) 1028–1043; https://doi.org/10.1016/j.tig.2021.07.003Search in Google Scholar
P. V. Markov, M. Ghafari, M. Beer, K. Lythgoe, P. Simmonds, N. I. Stilianakis and A. Katzourakis, The evolution of SARS-CoV-2, Nat. Rev. Microbiol.21(6) (2023) 361–379; https://doi.org/10.1038/s41579-023-00878-2Search in Google Scholar
K. Kim, P. Calabrese, S. Wang, C. Qin, Y. Rao, P. Feng and X. S. Chen, The roles of APOBEC-mediated RNA editing in SARS-CoV-2 mutations, replication and fitness, Sci Rep.12(1) (2022) Article ID 14972 (15 pages); https://doi.org/10.1038/s41598-022-19067-xSearch in Google Scholar
N. J. Hardenbrook and P. Zhang, A structural view of the SARS-CoV-2 virus and its assembly, Curr. Opin. Virol.52 (2022) 123–134; https://doi.org/10.1016/j.coviro.2021.11.011Search in Google Scholar
S. Khan, M. S. Shafiei, C. Longoria, J. W. Schoggins, R. C. Savani and H. Zaki, SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway, Elife10 (2021) e68563 (26 pages); https://doi.org/10.7554/eLife.68563Search in Google Scholar
C. B. Forsyth, L. Zhang, A. Bhushan, B. Swanson, L. Zhang, J. I. Mamede, R. M. Voigt, M. Shaikh, P. A. Engen and A. Keshavarzian, The SARS-CoV-2 S1 spike protein promotes MAPK and NF-kB activation in human lung cells and inflammatory cytokine production in human lung and intestinal epithelial cells, Microorganisms10(10) (2022) Article ID 1996; https://doi.org/10.3390/microorganisms10101996Search in Google Scholar
M. G. Frank, M. Fleshner and S. F. Maier, Exploring the immunogenic properties of SARS-CoV-2 structural proteins: PAMP:TLR signaling in the mediation of the neuroinflammatory and neurologic sequelae of COVID-19, Brain Behav. Immun.111 (2023) 259–269; https://doi.org/10.1016/j.bbi.2023.04.009Search in Google Scholar
N. Wanner, G. Andrieux, I. M. P. Badia, C. Edler, S. Pfefferle, M. T. Lindenmeyer, C. Schmidt-Lauber, J. Czogalla, M. N. Wong, Y. Okabayashi, F. Braun, M. Lütgehetmann, E. Meister, S. Lu, M. L. M. Noriega, T. Günther, A. Grundhoff, N. Fischer, H. Bräuninger, D. Lindner, D. Westermann, F. Haas, K. Roedl, S. Kluge, M. M. Addo, S. Huber, A. W. Lohse, J. Reiser, B. Ondruschka, J. P. Sperhake, J . Saez-Rodriguez, M. Boerries, S. S. Hayek, M. Aepfelbacher, P. Scaturro, V. G. Puelles and T. B. Huber, Molecular consequences of SARS-CoV-2 liver tropism, Nat. Metab.4(3) (2022) 310–319; https://doi.org/10.1038/s42255-022-00552-6Search in Google Scholar
N. Lovšin and J. Marc, Glucocorticoid receptor regulates TNFSF11 Transcription by binding to glucocorticoid responsive element in TNFSF11 proximal promoter region, Int. J. Mol. Sci.22(3) (2021) Article ID 1054 (14 pages); https://doi.org/10.3390/ijms22031054Search in Google Scholar
C. K. Yuen, J. Y. Lam, W. M. Wong, L. F. Mak, X Wang, H. Chu, J.-P. Cai, D.-Y. Jin, K. K.-W. To, J. F.-W. Chan, K.-Y. Yuen and K.-H. Kok, SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists, Emerg. Microbes Infect.9(1) (2020) 1418–1428; https://doi.org/10.1080/22221751.2020.1780953Search in Google Scholar
C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang and B. Cao, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet95(10223) (2020) 497–506; https://doi.org/10.1016/s0140-6736(20)30183-5Search in Google Scholar
C. Qin, L. Zhou, Z. Hu, S. Zhang, S. Yang, Y. Tao, C. Xie, K. Ma, K. Shang, W. Wang and D.-S. Tian, Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China, Clin. Infect. Dis.71(15) (2020) 762–768; https://doi.org/10.1093/cid/ciaa248Search in Google Scholar
H. Yang and Z. Rao, Structural biology of SARS-CoV-2 and implications for therapeutic development, Nat. Rev. Microbiol.19(11) (2021) 685–700; https://doi.org/10.1038/s41579-021-00630-8Search in Google Scholar
Y. Nakata, H. Ode, M. Kubota, T. Kasahara, K. Matsuoka, A. Sugimoto A, M. Imahashi, Y. Yokomaku and Y. Iwatani, Cellular APOBEC3A deaminase drives mutations in the SARS-CoV-2 genome, Nucleic Acids Res. 51(2) (2023) 783–795; https://doi.org/10.1093/nar/gkac1238Search in Google Scholar
P. Jalili, D. Bowen, A. Langenbucher, S. Park, K. Aguirre, R. B. Corcoran, A. G. Fleischman, M. S. Lawrence, L. Zou and R. Buisson, Quantification of ongoing APOBEC3A activity in tumor cells by monitoring RNA editing at hotspots, Nat. Commun. 11(1) (2020) Article ID 2971 (13 pages); https://doi.org/10.1038/s41467-020-16802-8Search in Google Scholar
E. K. Law, R. Levin-Klein, M. C. Jarvis, H. Kim, P. P. Argyris, M. A. Carpenter, G. J. Starrett, N. A. Temiz, L. K. Larson, C. Durfee, M. B. Burns, R. I. Vogel, S. Stavrou, A. N. Aguilera, S. Wagner, D. A. Largaespada, T. K. Starr, S. R. Ross and R. S. Harris, APOBEC3A catalyzes mutation and drives carcinogenesis in vivo, J. Exp. Med.217(12) (2020) e20200261 (22 pages); https://doi.org/10.1084/jem.20200261Search in Google Scholar
M. B. Burns, L. Lackey, M. A. Carpenter, A. Rathore, A. M. Land, B. Leonard, E. W. Refsland, D. Kotandeniya, N. Tretyakova, J. B. Nikas, D. Yee, N. A. Temiz, D. E. Donohue, R. M. McDougle, W. L. Brown, E. K. Law and R. S. Harris, APOBEC3B is an enzymatic source of mutation in breast cancer, Nature494(7437) (2013) 366–370; https://doi.org/10.1038/nature11881Search in Google Scholar
J. Liu, Y. Li, Q. Liu, Q. Yao, X. Wang, H. Zhang, R. Chen, L. Ren, J. Min, F. Deng, B. Yan, L. Liu, Z. Hu, M. Wang and Y. Zhou, SARS-CoV-2 cell tropism and multiorgan infection, Cell Discov.7(1) (2021) Article ID 17 (4 pages); https://doi.org/10.1038/s41421-021-00249-2Search in Google Scholar