Accès libre

Synthesis of magnetic N-doped carbon dots as pH-responsive targeted molecule cargo and its antioxidant and antibacterial behaviour

, , ,  et   
16 juil. 2025
À propos de cet article

Citez
Télécharger la couverture

B. Wang and S. Lu, The light of carbon dots: from mechanism to applications, Matter 5(1) (2022) 110–149; https://doi.org/10.1016/j.matt.2021.10.016 Search in Google Scholar

S. Ganguly, P. Das, S. Banerjee and N. C. Das, Advancement in science and technology of carbon dot-polymer hybrid composites: a review, Funct. Compos. Struct. 1(2) (2019) Article ID 022001; https://doi.org/10.1088/2631-6331/ab0c80 Search in Google Scholar

M. Kurian and A. Paul, Recent trends in the use of green sources for carbon dot synthesis – a short review, Carbon Trends 3 (2021) Article ID 100032 (11 pages); https://doi.org/10.1016/j.cartre.2021.100032 Search in Google Scholar

G. Ge, L. Li, D. Wang, M. Chen, Z. Zeng, W. Xiong, X. Wu and C. Guo, Carbon dots: Synthesis, properties and biomedical applications, J. Mater. Chem. B 9(33) (2021) 6553–6575; https://doi.org/10.1039/D1TB01077H Search in Google Scholar

P. Das, S. Ganguly, S. Banerjee and N. C. Das, Graphene based emergent nanolights: A short review on the synthesis, properties and application, Res. Chem. Intermed. 45 (2019) 3823–3853; https://doi.org/10.1007/s11164-019-03823-2 Search in Google Scholar

P. Das, S. R. Ahmed, S. Srinivasan and A. R. Rajabzadeh, Optical Properties of Quantum Dots, in Quantum Dots and Polymer Nanocomposites, CRC Press, 2022, pp. 69–85. Search in Google Scholar

M. Zulfajri, S. Sudewi, S. Ismulyati, A. Rasool, M. Adlim and G. G. Huang, Carbon dot/polymer composites with various precursors and their sensing applications: a review, Coatings 11(9) (2021) Article ID 1100; https://doi.org/10.3390/coatings11091100 Search in Google Scholar

J. Wang and J. Qiu, A review of carbon dots in biological applications, J. Mater. Sci. 51 (2016) 4728–4738; https://doi.org/10.1007/s10853-016-9797-7 Search in Google Scholar

T. Lv, L. Pan, X. Liu, T. Lu, G. Zhu, Z. Sun and C. Q. Sun, One-step synthesis of CdS–TiO₂–chemically reduced graphene oxide composites via microwave-assisted reaction for visible-light photo-catalytic degradation of methyl orange, Catal. Sci. Technol. 2(4) (2012) 754–758; https://doi.org/10.1039/C2CY00452F Search in Google Scholar

V. Ahuja, A.K. Bhatt, S. Varjani, K.-Y. Choi, S.-H. Kim, Y.-H. Yang and S. K. Bhatia, Quantum dot synthesis from waste biomass and its applications in energy and bioremediation, Chemosphere 293 (2022) Article ID 133564; https://doi.org/10.1016/j.chemosphere.2022.133564 Search in Google Scholar

S. A. Shaik, S. Sengupta, R. S. Varma, M. B. Gawande and A. Goswami, Syntheses of N-doped carbon quantum dots (NCQDs) from bioderived precursors: a timely update, ACS Sustain. Chem. Eng. 9(1) (2020) 3–49; https://doi.org/10.1021/acssuschemeng.0c04727 Search in Google Scholar

L. Behera, D. Pati, B. B. Sahu and S. Mohapatra, One-step synthesis of Mn-carbon dot nanoprobe for signal-on detection of arsenic and reversible temperature sensing, Colloids Surf. A 653 (2022) Article ID 130002; https://doi.org/10.1016/j.colsurfa.2022.130002 Search in Google Scholar

A. A. Madhavan, D. Kushwaha, D. Nath, R. Ghosh Moulick and J. Bhattacharya, Natural occurrence of carbon dots during in vitro nonenzymatic glycosylation of hemoglobin A₀, ACS Omega 7(5) (2022) 3881–3888; https://doi.org/10.1021/acsomega.1c03219 Search in Google Scholar

H. Li, X. Yan, D. Kong, R. Jin, C. Sun, D. Du, Y. Lin and G. Lu, Recent advances in carbon dots for bioimaging applications, Nanoscale Horiz. 5(2) (2020) 218–234; https://doi.org/10.1039/C9NH00476A Search in Google Scholar

G. A. Hutton, B. C. Martindale and E. Reisner, Carbon dots as photosensitisers for solar-driven catalysis, Chem. Soc. Rev. 46(20) (2017) 6111–6123; https://doi.org/10.1039/C7CS00235A Search in Google Scholar

V. Sharma, P. Tiwari and S. M. Mobin, Sustainable carbon-dots: Recent advances in green carbon dots for sensing and bioimaging, J. Mater. Chem. B 5 (2017) 8904–8924; https://doi.org/10.1039/C7TB02484C Search in Google Scholar

S. Ganguly, P. Das, S. Das, U. Ghorai, M. Bose, S. Ghosh, M. Mondal, A. K. Das, S. Banerjee and N. C. Das, Microwave assisted green synthesis of zwitterionic photoluminescent N-doped carbon dots: An efficient ‘on-off’ chemosensor for tracer Cr(+6) considering the inner filter effect and nano drug-delivery vector, Colloids Surf. A 579 (2019) Article ID 123604; https://doi.org/10.1016/j.colsurfa.2019.123604 Search in Google Scholar

S. Ganguly, P. Das, E. Itzhaki, E. Hadad, A. Gedanken and S. Margel, Microwave-synthesized polysaccharide-derived carbon dots as therapeutic cargoes and toughening agents for elastomeric gels, ACS Appl. Mater. Interfaces 12(46) (2020) 51940–51951; https://doi.org/10.1021/acsami.0c14527 Search in Google Scholar

S. K. Debnath and R. Srivastava, Drug delivery with carbon-based nanomaterials as versatile nano-carriers: Progress and prospects, Front. Nanotechnol. 3 (2021) Article ID 644564 (22 pages); https://doi.org/10.3389/fnano.2021.644564 Search in Google Scholar

Q. Wang, X. Huang, Y. Long, X. Wang, H. Zhang, R. Zhu, L. Liang, P. Teng and H. Zheng, Hollow luminescent carbon dots for drug delivery, Carbon 59 (2013) 192–199; https://doi.org/10.1016/j.carbon.2013.03.009 Search in Google Scholar

X. Jia, M. Pei, X. Zhao, K. Tian, T. Zhou and P. Liu, PEGylated oxidized alginate-DOX prodrug conjugate nanoparticles cross-linked with fluorescent carbon dots for tumor theranostics, ACS Biomater. Sci. Eng. 2(9) (2016) 1641–1648; https://doi.org/10.1021/acsbiomaterials.6b00443 Search in Google Scholar

D. Guimarães, A. Cavaco-Paulo and E. Nogueira, Design of liposomes as drug delivery system for therapeutic applications, Int. J. Pharm. 601 (2021) Article ID 120571; https://doi.org/10.1016/j.ijpharm.2021.120571 Search in Google Scholar

S. Yasamineh, P. Yasamineh, H. G. Kalajahi, O. Gholizadeh, Z. Yekanipour, H. Afkhami, M. Eslami, A. H. Kheirkhah, M. Taghizadeh and Y. Yazdani, A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system, Int. J. Pharm. 624 (2022) Article ID 121878; https://doi.org/10.1016/j.ijpharm.2022.121878 Search in Google Scholar

G. Shim, S. Jeong, J. L. Oh and Y. Kang, Lipid-based nanoparticles for photosensitive drug delivery systems, J. Pharm. Investig. 52 (2022) 151–160; https://doi.org/10.1007/s40005-021-00553-9 Search in Google Scholar

M. Zu, Y. Ma, B. Cannup, D. Xie, Y. Jung, J. Zhang, C. Yang, F. Gao, D. Merlin and B. Xiao, Oral delivery of natural active small molecules by polymeric nanoparticles for the treatment of inflammatory bowel diseases, Adv. Drug Deliv. Rev. 176 (2021) Article ID 113887; https://doi.org/10.1016/j.addr.2021.113887 Search in Google Scholar

S. Karimi and H. Namazi, A photoluminescent folic acid-derived carbon dot functionalized magnetic dendrimer as a pH-responsive carrier for targeted doxorubicin delivery, New J. Chem. 45(14) (2021) 6397–6405; https://doi.org/10.1039/D0NJ06261H Search in Google Scholar

B. Rani, M. Ahmad, K. Alam, F. Seidi, S. Shakeel, J. Song, Y. Jin and H. Xiao, Recent advances in magnetic nanoparticles: Key applications, environmental insights and future strategies, Sustain. Mater. Technol. 40 (2024) e00985; https://doi.org/10.1016/j.susmat.2024.e00985 Search in Google Scholar

M. Colombo, S. C. Romero, M. F. Casula, L. Gutiérrez, M. P. Morales, I. B. Böhm, J. T. Heverhagen, D. Prosperi and W. J. Parak, Biological applications of magnetic nanoparticles, Chem. Soc. Rev. 41(11) (2012) 4306–4334; https://doi.org/10.1039/C2CS15337H Search in Google Scholar

C. V. Fernandes, A. Francesko, C. Ribeiro, M. B. López, P. Martins and S. L. Mendez, Advances in magnetic nanoparticles for biomedical applications, Adv. Healthc. Mater. 7(5) (2018) Article ID 1700845; https://doi.org/10.1002/adhm.201700845 Search in Google Scholar

S. K. Kailasa and J. R. Koduru, Perspectives of magnetic nature carbon dots in analytical chemistry: From separation to detection and bioimaging, TrAC Trends Environ. Anal. Chem. 33 (2022) e00153; https://doi.org/10.1016/j.teac.2021.e00153 Search in Google Scholar

J. T. John, E. F. Nwude, S. Singh, B. G. Prajapati, D. U. Kapoor and N. Muangsin, Sustainable synthesis of gold nanoparticles for drug delivery and cosmeceutical applications: a review, BioNanoScience 14 (2024) 3355–3384; https://doi.org/10.1007/s12668-024-01436-7 Search in Google Scholar

M. Yoosefian and H. Sabaghian, Silver nanoparticle-based drug delivery systems in the fight against COVID-19: Enhancing efficacy, reducing toxicity and improving drug bioavailability, J. Drug Target. 32(7) (2024) 794–806; https://doi.org/10.1080/1061186X.2024.2356147 Search in Google Scholar

N. S. Thakur, N. Saleh, A. F. Khan, B. Chakrabarty and V. Agrahari, Progress and promise of photoresponsive nanocarriers for precision drug delivery in cancer, J. Photochem. Photobiol. C: Photochem. Rev. 59 (2024) Article ID 100665; https://doi.org/10.1016/j.jphotochemrev.2024.100665 Search in Google Scholar

Z. Zhu, R. Cheng, L. Ling, Q. Li and S. Chen, Rapid and large-scale production of multi-fluorescence carbon dots by a magnetic hyperthermia method, Angew. Chem. Int. Ed. 59(8) (2020) 3099–3105; https://doi.org/10.1002/anie.201914331 Search in Google Scholar

S. Li, Q. Zhou, Z. Li, M. Liu, Y. Li and C. Chen, Sensitive fluorescent probe based on combination of magnetic molecularly imprinted materials and carbon dots derived from Prussian blue for p-amino-azobenzene in environmental samples, J. Clean. Prod. 402 (2023) Article ID 136827; https://doi.org/10.1016/j.jclepro.2023.136827 Search in Google Scholar

X. Li, Y. Fu, S. Zhao, J. Xiao, M. Lan, B. Wang, K. Zhang, X. Song and L. Zeng, Metal ions-doped carbon dots: Synthesis, properties and applications, Chem. Eng. J. 430 (2022) Article ID 133101; https://doi.org/10.1016/j.cej.2021.133101 Search in Google Scholar

Y. Zhong, L. Chen, S. Yu, Y. Yang and X. Liu, Advances in magnetic carbon dots: A theranostics platform for fluorescence/magnetic resonance bimodal imaging and therapy for tumors, ACS Bio-mater. Sci. Eng. 9(12) (2023) 6548–6566; https://doi.org/10.1021/acsbiomaterials.3c00988 Search in Google Scholar

T. Rezaei, M. Rezaei, S. Karimifard, F. M. Beram, M. S. Dakkali, M. Heydari, S. A. Behbahanizadeh, E. Mostafavi, D. Olegovich Bokov, M. J. Ansari, B. F. Far, I. Akbarzadeh and C. Chaiyasut, Folic acid-decorated pH-responsive nanoniosomes with enhanced endocytosis for breast cancer therapy: In vitro studies, Front. Pharmacol. 13 (2022) Article ID 851242 (17 pages); https://doi.org/10.3389/fphar.2022.851242 Search in Google Scholar

N. Choi, C. Tang, Y. Park, A. Du, G. A. Ayoko, Y. Hwang and S. Chae, Visible-light-driven photo-catalytic degradation of tetracycline using citric acid and lemon juice-derived carbon quantum dots incorporated TiO₂ nanocomposites, Sep. Purif. Technol. 350 (2024) Article ID 127836; https://doi.org/10.1016/j.seppur.2024.127836 Search in Google Scholar

M. O. Besenhard, A. P. LaGrow, A. Hodzic, M. Kriechbaum, L. Panariello, G. Bais, K. Loizou, S. Damilos, M. M. Cruz, N. T. K. Thanh and A. Gavriilidis, Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: New insights and continuous production via flow chemistry, Chem. Eng. J. 399 (2020) Article ID 125740; https://doi.org/10.1016/j.cej.2020.125740 Search in Google Scholar

S. Ganguly, Neelam, I. Grinberg and S. Margel, Layer-by-layer controlled synthesis at room temperature of tri-modal (MRI, fluorescence and CT) core/shell superparamagnetic IO/human serum albumin nanoparticles for diagnostic applications, Polym. Adv. Technol. 32(10) (2021) 3909–3921; https://doi.org/10.1002/pat.5344 Search in Google Scholar

D. Amara and S. Margel, Synthesis and characterization of superparamagnetic core-shell micro-metre-sized particles of narrow size distribution by a swelling process, J. Mater. Chem. 22 (2012) 9268–9276; https://doi.org/10.1039/C2JM00021K Search in Google Scholar

R. Mohammad-Rezaei, H. Razmi, V. Abdollahi and A. A. Matin, Preparation and characterization of Fe₃O₄/graphene quantum dots nanocomposite as an efficient adsorbent in magnetic solid phase extraction: Application to determination of bisphenol A in water samples, Anal. Methods 6(20) (2014) 8413–8419; https://doi.org/10.1039/C4AY01633E Search in Google Scholar

S. Ganguly and S. Margel, Design of magnetic hydrogels for hyperthermia and drug delivery, Polymers 13(23) (2021) Article ID 4259 (22 pages); https://doi.org/10.3390/polym13234259 Search in Google Scholar

Y. Köseoğlu, F. Yıldız, D. K. Kim, M. Muhammed and B. Aktaş, EPR studies on Na-oleate coated Fe₃O₄ nanoparticles, Phys. Status Solidi C 1(12) (2004) 3511–3515; https://doi.org/10.1002/pssc.200405493 Search in Google Scholar

S. Zhuo, Y. Guan, H. Li, J. Fang, P. Zhang, J. Du and C. Zhu, Facile fabrication of fluorescent Fe-doped carbon quantum dots for dopamine sensing and bioimaging application, Analyst 144(2) (2019) 656–662; https://doi.org/10.1039/C8AN01741G Search in Google Scholar

Y. Guo, D. Tang, L. Zhang, B. Li, A. Iqbal, W. Liu and W. Qin, Synthesis of ultrathin carbon dots--coated iron oxide nanocubes decorated with silver nanoparticles and their excellent catalytic properties, Ceram. Int. 43(9) (2017) 7311–7320; https://doi.org/10.1016/j.ceramint.2017.03.033 Search in Google Scholar

B. Li, X. Wang, Y. Guo, A. Iqbal, Y. Dong, W. Li, W. Liu, W. Qin, S. Chen and X. Zhou, One-pot synthesis of polyamines improved magnetism and fluorescence Fe₃O₄-carbon dots hybrid NPs for dual modal imaging, Dalton Trans. 45(13) (2016) 5484–5491; https://doi.org/10.1039/C5DT04488J Search in Google Scholar

C. Han, A. Zhang, Y. Kong, N. Yu, T. Xie, B. Dou, K. Li, Y. Wang, J. Li and K. Xu, Multifunctional iron oxide-carbon hybrid nanoparticles for targeted fluorescent/MR dual-modal imaging and detection of breast cancer cells, Anal. Chim. Acta 1067 (2019) 115–128; https://doi.org/10.1016/j.aca.2019.03.054 Search in Google Scholar

E. R. Monazam, R. W. Breault and R. Siriwardane, Kinetics of magnetite (Fe₃O₄) oxidation to hematite (Fe₂O₃) in air for chemical looping combustion, Ind. Eng. Chem. Res. 53(34) (2014) 13320–13328; https://doi.org/10.1021/ie501536s Search in Google Scholar

G. Gnanaprakash, S. Ayyappan, T. Jayakumar, J. Philip and B. Raj, Magnetic nanoparticles with enhanced γ-Fe₂O₃ to α-Fe₂O₃ phase transition temperature, Nanotechnology 17(23) (2006) Article ID 5851; https://doi.org/10.1088/0957-4484/17/23/023 Search in Google Scholar

X. Hu, X.-Y. Ma, J. Tian and Z. Huang, Rapid and facile synthesis of graphene quantum dots with high antioxidant activity, Inorg. Chem. Commun. 122 (2020) Article ID 108288; https://doi.org/10.1016/j.inoche.2020.108288 Search in Google Scholar

D. Li, X. Na, H. Wang, Y. Xie, S. Cong, Y. Song, X. Xu, B.-W. Zhu and M. Tan, Fluorescent carbon dots derived from Maillard reaction products: Their properties, biodistribution, cytotoxicity and antioxidant activity, J. Agric. Food Chem. 66(6) (2018) 1569–1575; https://doi.org/10.1021/acs.jafc.7b05643 Search in Google Scholar

P. Das, S. Ganguly, S. Margel and A. Gedanken, Tailor-made magnetic nanolights: Fabrication to cancer theranostics applications, Nanoscale Adv. 3(24) (2021) 6762–6796; https://doi.org/10.1039/D1NA00447F Search in Google Scholar

Y. Zou, Z. Sun, Q. Wang, Y. Ju, N. Sun, Q. Yue, Y. Deng, S. Liu, S. Yang, Z. Wang, F. Li, Y. Hou, C. Deng, D. Ling and Y. Deng, Core-shell magnetic particles: Tailored synthesis and applications, Chem. Rev. 125(2) (2024) 972–1048; https://doi.org/10.1021/acs.chemrev.4c00710 Search in Google Scholar

R. Y. Mushtaq, N. R. Naveen, K. J. Rolla, H. A. Shmrany, S. Alshehri, A. Salawi, M. Kurakula, M. A. Alghamdi, W. Y. Rizg, R. B. Bakhaidar, W. A. Abualsunun, K. M. Hosny and A. J. Alamoudi, Design and evaluation of magnetic-targeted bilosomal gel for rheumatoid arthritis: flurbiprofen delivery using superparamagnetic iron oxide nanoparticles, Front. Pharmacol. 15 (2024) Article ID 1433734 (14 pages); https://doi.org/10.3389/fphar.2024.1433734 Search in Google Scholar

M. R. Brophy and P. Deasy, Application of the Higuchi model for drug release from dispersed matrices to particles of general shape, Int. J. Pharm. 37(1–2) (1987) 41–47; https://doi.org/10.1016/0378-5173(87)90008-1 Search in Google Scholar

S. Kim, S. Philippot, S. Fontanay, R. E. Duval, E. Lamouroux, N. Canilho and A. Pasc, pH- and glutathione-responsive release of curcumin from mesoporous silica nanoparticles coated using tannic acid-Fe(III) complex, RSC Adv. 5(110) (2015) 90550–90558; https://doi.org/10.1039/C5RA16004A Search in Google Scholar

E. Aram, H. S. Abandansari, F. Radmanesh, H. R. Khorasani, M. R. Nowroozi, A. Hassanpour, H. Baharvand and D. Sabour, Shell-sheddable and charge-switchable magnetic nanoparticle as pH-sensitive nanocarrier for targeted drug delivery applications, Polym. Adv. Technol. 35(4) (2024) e6366; https://doi.org/10.1002/pat.6366 Search in Google Scholar

M. Ayubi, M. Karimi, S. Abdpour, K. Rostamizadeh, M. Parsa, M. Zamani and A. Saedi, Magnetic nanoparticles decorated with PEGylated curcumin as dual-targeted drug delivery: Synthesis, toxi-city and biocompatibility study, Mater. Sci. Eng. C 104 (2019) Article ID 109810; https://doi.org/10.1016/j.msec.2019.109810 Search in Google Scholar

N. A. Travlou, D. A. Giannakoudakis, M. Algarra, A. M. Labella, E. Rodríguez-Castellón and T. J. Bandosz, S- and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity, Carbon 135 (2018) 104–111; https://doi.org/10.1016/j.carbon.2018.04.018 Search in Google Scholar

B. C. Chung, E. H. Mashalidis, T. Tanino, M. Kim, A. Matsuda, J. Hong, S. Ichikawa and S. Y. Lee, Structural insights into inhibition of lipid I production in bacterial cell wall synthesis, Nature 533 (2016) 557–560; https://doi.org/10.1038/nature17636 Search in Google Scholar

Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Pharmacie, Pharmacie, autres