Accès libre

Untargeted metabolic analysis using LC-Q-TOF-MS and toxicity assessment of Eryngium foetidum in zebrafish embryos

, , , , , , , ,  et   
10 avr. 2025
À propos de cet article

Citez
Télécharger la couverture

J. M. Al-Khayri, G. R. Sahana, P. Nagella, B. V. Joseph, F. M. Alessa and M. Q. Al-Mssallem, Flavonoids as potential anti-inflammatory molecules: A review, Molecules 27(9) (2022) Article ID 2901 (24 pages); https://doi.org/10.3390/molecules27092901 Search in Google Scholar

L. F. de Melo Alcantara, P. T. da Silva, Q. M. De Oliveira, T. G. Dos Santos Souza, M. M. da Silva, G. S. Feitoza, W. K. Costa, M. A. da Conceição de Lira, C. A. Chagas, F. C. A. de Aguiar Júnior, M. T. Dos Santos Correia and M. V. da Silva, Toxicological safety, antioxidant activity and phyto-chemical characterization of leaf and bark aqueous extracts of Commiphora leptophloeos (Mart.) J.B. Gillett, J. Toxicol. Environ. Health A 86(16) (2023) 557−574; https://doi.org/10.1080/15287394.2023.2224827 Search in Google Scholar

P. M. P. Ferreira, D. D. R. Arcanjo and A. P. Peron, Drug development, Brazilian biodiversity and political choices: Where are we heading?, J. Toxicol. Environ. Health B 26(5) (2023) 257−274; https://doi.org/10.1080/10937404.2023.2193762 Search in Google Scholar

M. Gorzynik-Debicka, P. Przychodzen, F. Cappello, A. Kuban-Jankowska, A. Marino Gammazza, N. Knap, M. Wozniak and M. Gorska-Ponikowska, Potential health benefits of olive oil and plant polyphenols, Int. J. Mol. Sci. 19(3) (2018) Article ID 686 (13 pages); https://doi.org/10.3390/ijms19030686 Search in Google Scholar

F. S. Li and J. K. Weng, Demystifying traditional herbal medicine with modern approach, Nat. Plants 3 (2017) Article ID 17109 (17 pages); https://doi.org/10.1038/nplants.2017.109 Search in Google Scholar

B. B. Petrovska, Historical review of medicinal plants’ usage, Pharmacogn. Rev. 6(11) (2012) 1−5; https://doi.org/10.4103%2F0973-7847.95849 Search in Google Scholar

D. J. Newman and G. M. Cragg, Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019, J. Nat. Prod. 83(3) (2020) 770−803; https://doi.org/10.1021/acs.jnatprod.9b01285 Search in Google Scholar

M. Zhang, M. Moalin aand G. R. M. M. Haenen, Connecting West and East, Int. J. Mol. Sci. 20(9) (2019) Article ID 2333 (5 pages); https://doi.org/10.3390/ijms20092333 Search in Google Scholar

M. A. Salem, L. Perez de Souza, A. Serag, A. R. Fernie, M. A. Farag, S. M. Ezzat and S. Alseekh, Metabolomics in the context of plant natural products research: From sample preparation to meta-bolite analysis, Metabolites 10(1) (2020) Article ID 37 (30 pages); https://doi.org/10.3390/meta-bo10010037 Search in Google Scholar

M. DiBello, A. R. Healy, H. Nikolayevskiy, Z. Xu and S. B. Herzon, Structure elucidation of secondary metabolites: Current frontiers and lingering pitfalls, Acc. Chem. Res. 56(12) (2023) 1656−1668; https://doi.org/10.1021/acs.accounts.3c00183 Search in Google Scholar

M. Fitzgerald, M. Heinrich and A. Booker, Medicinal plant analysis: A historical and regional discussion of emergent complex techniques, Front. Pharmacol. 10 (2020) Article ID 1480 (14 pages); https://doi.org/10.3389/fphar.2019.01480 Search in Google Scholar

D. G. Cox, J. Oh, A. Keasling, K. L. Colson and M. T. Hamann, The utility of metabolomics in natural product and biomarker characterization, Biochim. Biophys. Acta 1840(12) (2014) 3460−3474; https://doi.org/10.1016/j.bbagen.2014.08.007 Search in Google Scholar

L. Xu, F. Lao, Z. Xu, X. Wang, F. Chen, X. Liao, A. Chen and S. Yang, Use of liquid chromatography quadrupole time-of-flight mass spectrometry and metabolomic approach to discriminate coffee brewed by different methods, Food Chem. 286 (2019) 106−112; https://doi.org/10.1016/j.food-chem.2019.01.154 Search in Google Scholar

G. S. de Jesus, D. Silva Trentin, T. F. Barros, A. M. T. Ferreira, B. C. de Barros, P. de Oliveira Figueiredo, F. Rodrigues Garcez, É. L. Dos Santos, A. C. Micheletti and N. C. Yoshida, Medicinal plant Miconia albicans synergizes with ampicillin and ciprofloxacin against multi-drug resistant Acinetobacter baumannii and Staphylococcus aureus, BMC Complement. Med. Ther. 23(1) (2023) Article ID 374 (18 pages); https://doi.org/10.1186/s12906-023-04147-w Search in Google Scholar

B. N. Moiketsi, K. P. P. Makale, G. Rantong, T. O. Rahube and A. Makhzoum, Potential of selected African medicinal plants as alternative therapeutics against multi-drug-resistant bacteria, Biomedicines 11(10) (2023) Article ID 2605 (30 pages); https://doi.org/10.3390/biomedicines11102605 Search in Google Scholar

H. Yuan, Q. Ma, H. Cui, G. Liu, X. Zhao, W. Li and G. Piao, How can synergism of traditional medicines benefit from network pharmacology? Molecules 22(7) (2017) Article ID 1135 (19 pages); https://doi.org/10.3390/molecules22071135 Search in Google Scholar

B. K. Singh, Y. Ramakrishna and S. V. Ngachan, Spiny coriander (Eryngium foetidum L.): A commonly used, neglected spicing-culinary herb of Mizoram, India, Genet Resour. Crop Evol. 61(6) 1085−1090; https://doi.org/10.1007/s10722-014-0130-5 Search in Google Scholar

J. H. Paul, C. E. Seaforth and T. Tikasingh, Eryngium foetidum L.: A review, Fitoterapia 82(3) (2011) 302−308; https://doi.org/10.1016/j.fitote.2010.11.010 Search in Google Scholar

T. L. M. Rodrigues, M. E. P. Silva, E. S. C. Gurgel, M. S. Oliveira and F. C. A. Lucas, Eryngium foetidum L. (Apiaceae): A literature review of traditional uses, chemical composition, and pharmacological activities, Evid. Based Complement. Alternat. Med. 2022 (2022) Article ID 2896895 (15 pages); https://doi.org/10.1155/2022/2896895 Search in Google Scholar

M. D. García, M. T. Sáenz, M. A. Gómez and M. A. Fernández, Topical antiinflammatory activity of phytosterols isolated from Eryngium foetidum on chronic and acute inflammation models, Phytother. Res. 13(1) (1999) 78−80; https://doi.org/10.1002/(sici)1099-1573(199902)13:1%3C78::aidptr384%3E3.0.co;2-f Search in Google Scholar

D. D. S. T. C. Leitão, A. P. P. Barbosa-Carvalho, F. C. de Siqueira, R. P. E. Sousa, A. S. Lopes and R. C. Chisté, Extracts of Eryngium foetidum leaves from the Amazonia were efficient scavengers of ROS and RNS, Antioxidants 12(5) (2023) Article ID 1112 (13 pages); https://doi.org/10.3390/anti-ox12051112 Search in Google Scholar

S. Singh, D. R. Singh, K. M. Salim, A. Srivastava, L. B. Singh and R. C. Srivastava, Estimation of proximate composition, micronutrients and phytochemical compounds in traditional vegetables from Andaman and Nicobar islands, Int. J. Food Sci. Nutr. 62(7) (2011) 765−773; https://doi.org/10.3109/09637486.2011.585961 Search in Google Scholar

P. S. Thomas, E. E. Essien, S. J. Ntuk and M. I. Choudhary, Eryngium foetidum L. essential oils: Chemical composition and antioxidant capacity, Medicines (Basel) 4(2) (2017) Article ID 24 (7 pages); https://doi.org/10.3390/medicines4020024 Search in Google Scholar

X. Zhang, J. Chen, S. Zhou and H. Zhao, Ethanol extract of Eryngium foetidum leaves induces mitochondrial associated apoptosis via ROS generation in human gastric cancer cells, Nutr. Cancer 74(8) (2022) 2996−3006; https://doi.org/10.1080/01635581.2022.2028864 Search in Google Scholar

O. Hernández-Abreu, P. Castillo-España, I. León-Rivera, M. Ibarra-Barajas, R. Villalobos-Molina, J. González-Christen, J. Vergara-Galicia, S. Estrada-Soto, Antihypertensive and vasorelaxant effects of tilianin isolated from Agastache mexicana are mediated by NO/cGMP pathway and potassium channel opening, Biochem. Pharmacol. 78(1) (2009) 54−61; https://doi.org/10.1016/j.bcp.2009.03.016 Search in Google Scholar

C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann and T. F. Schilling, Stages of embryonic development of the zebrafish, Dev. Dyn. 203(3) (1995) 203−253; https://doi.org/10.1002/aja.1002030302 Search in Google Scholar

B. V. Yesudhason, J. R. S. Selvan Christyraj, M. Ganesan, K. Subbiahanadar Chelladurai, S. Venkatachalam, A. Ramalingam, J. Benedict, V. D. Paulraj and J. D. Selvan Christyraj, Developmental stages of zebrafish (Danio rerio) embryos and toxicological studies using foldscope microscope, Cell. Biol. Int. 44(10) (2020) 1968−1980; https://doi.org/10.1002/cbin.11412 Search in Google Scholar

Organization for Economic Co-operation and Development, Test No. 203: Fish, Acute Toxicity Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, 2019; https://doi.org/10.1787/9789264069961-en; last access date November 29, 2024. Search in Google Scholar

Organization for Economic Co-operation and Development, ANNEX II: In Vitro Models – Detailed Description of Methods and Generated Data, Series on Testing and Assessment No. 325: ENV/JM/MONO(2020)21/ANN2; 24 September2020, 1−186; https://one.oecd.org/document/ENV/JM/MONO(2020)21/ANN2/en/pdf; last access date November 29, 2024 Search in Google Scholar

R. von Hellfeld, K. Brotzmann, L. Baumann, R Strecker and T. Braunbeck, Adverse effects in the fish embryo acute toxicity (FET) test: a catalogue of unspecific morphological changes versus more specific effects in zebrafish (Danio rerio) embryos, Environ. Sci. Eur. 32 (2020) Article ID 122 (18 pages); https://enveurope.springeropen.com/articles/10.1186/s12302-020-00398-3 Search in Google Scholar

S. Rodríguez-Morales, B. Ocampo-Medina, N. Romero-Ceronio, C. Alvarado-Sánchez, M. Á. Vilchis-Reyes, L. F. Roa de la Fuente, R. Ortiz-Andrade and O. Hernández-Abreu, Metabolic profiling of vasorelaxant extract from Malvaviscus arboreus by LC/QTOF-MS, Chem. Biodivers. 18(4) (2021) e2000820 (8 pages); https://doi.org/10.1002/cbdv.202000820 Search in Google Scholar

D. D. Wang, J. Liang, W. Z. J. J. Yang, Hou, M. Yang, J. Da, Y. Wang, B. H. Jiang, X. Liu, W. Y. Wu and D. A. Guo, HPLC/qTOF-MS-oriented characteristic components data set and chemometric analysis for the holistic quality control of complex TCM preparations: Niuhuang Shangqing pill as an example, J. Pharm. Biomed. Anal. 89 (2014) 130−141; https://doi.org/10.1016/j.jpba.2013.10.042 Search in Google Scholar

S. Murugesu, A. Khatib, Q. U. Ahmed, Z. Ibrahim, B. F. Uzir, K. Benchoula, N. I. N. Yusoff, V. Perumal, M. F. Alajmi, S. Salamah and H. R. El-Seedi, Toxicity study on Clinacanthus nutans leaf hexane fraction using Danio rerio embryos, Toxicol. Rep. 6 (2019) 1148−1154; https://doi.org/10.1016/j.toxrep.2019.10.020 Search in Google Scholar

A. R. Abubakar and M. Haque, Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes, J. Pharm. Bioallied Sci. 12(1) (2020) 1−10; https://doi.org/10.4103%2Fjpbs.JPBS_175_19 Search in Google Scholar

K. A. Horzmann and J. L. Freeman, Making waves: New developments in toxicology with the zebrafish, Toxicol. Sci. 163(1) (2018) 5−12; https://doi.org/10.1038/nrd4627 Search in Google Scholar

C. A. MacRae and R. T. Peterson, Zebrafish as tools for drug discovery, Nat. Rev. Drug Discov. 14(10) (2015) 721−731; https://doi.org/10.1038/nrd4627 Search in Google Scholar

D. C. H. Metzger and P. M. Schulte, Epigenomics in marine fishes, Mar. Genomics 30 (2016) 43−54; https://doi.org/10.1016/j.margen.2016.01.004 Search in Google Scholar

K. N. Yamamoto, K. Hirota, K. Kono, S. Takeda, S. Sakamuru, M. Xia, R. Huang, C. P. Austin, K. L. Witt and R. R. Tice, Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines, Environ. Mol. Mutagen. 52(7) (2011) 547−561; https://doi.org/10.1002/em.20656 Search in Google Scholar

A. S. Krishna Murthy, E. E. McConnell, J. E. Huff, A. B. Russfield and A. E. Good, Forestomach neoplasms in Fischer F344/N rats and B6C3F1 mice exposed to diglycidyl resorcinol ether – an epoxy resin, Food Chem. Toxicol. 28(10) (1990) 723−729; https://doi.org/10.1016/0278-6915(90)90149-h Search in Google Scholar

A. Serrà, E. Gómez, G. Calderó, J. Esquena, C. Solans and E. Vallés, Conductive microemulsions for template CoNi electrodeposition, Phys. Chem. Chem. Phys. 15(35) (2013) 14653−14659; https://doi.org/10.1039/C3CP52021H Search in Google Scholar

K. Takahashi, H. Sakano, N. Numata, S. Kuroda and N. Mizuno, Effect of fatty acid diesters on permeation of anti-inflammatory drugs through rat skin, Drug Dev. Ind. Pharm. 28(10) (2002) 1285−1294; https://doi.org/10.1081/ddc-120015362 Search in Google Scholar

C. A. Bondi, J. L. Marks, L. B. Wroblewski, H. S. Raatikainen, S. R. Lenox and K. E. Gebhardt, Human and environmental toxicity of sodium lauryl sulfate (SLS): Evidence for safe use in household cleaning products, Environ. Health Insights 9 (2015) 27−32; https://doi.org/10.4137/ehi.s31765 Search in Google Scholar

R. Freitas, S. Silvestro, F. Coppola, S. Costa, V. Meucci, F. Battaglia, L. Intorre, A. M. V. M. Soares, C. Pretti and C. Faggio, Toxic impacts induced by sodium lauryl sulfate in Mytilus galloprovincialis, Comp. Biochem. Physiol. A 242 (2020) Article ID 110656 (8 pages); https://doi.org/10.1016/j.cbpa.2020.110656 Search in Google Scholar

H. Löffler and R. Happle, Profile of irritant patch testing with detergents: sodium lauryl sulfate, sodium laureth sulfate and alkyl polyglucoside, Contact Dermatitis 48(1) (2003) 26−32; https://doi.org/10.1034/j.1600-0536.2003.480105.x Search in Google Scholar

R. M. G. da Silva, V. M. de Oliveira Moraes, F. O. Granero, C. C. Malaguti Figueiredo, V. H. M. Dos Santos, L. P. Machado and L. Pereira Silva, Cytogenotoxicity evaluation of heavy metals detected in extracts and infusion of Baccharis trimera, potential bioaccumulator plant, J. Toxicol. Environ. Health A 87(3) (2024) 108−119; https://doi.org/10.1080/15287394.2023.2279120 Search in Google Scholar

M. Kebert, S. Kostić, V. Vuksanović, A. Gavranović Markić, B. Kiprovski, M. Zorić and S. Orlović, Metal- and organ-specific response to heavy metal-induced stress mediated by antioxidant enzymes’ activities, polyamines, and plant hormones levels in Populus deltoids, Plants (Basel) 11(23) (2022) Article ID 3246 (23 pages); https://doi.org/10.3390/plants11233246 Search in Google Scholar

S. Papazian and J. D. Blande, Dynamics of plant responses to combinations of air pollutants, Plant Biol. (Stuttgart) 22(1) (2020) 68−83; https://doi.org/10.1111/plb.12953 Search in Google Scholar

M. Uchimiya, D. Bannon, H. Nakanishi, M. B. McBride, M. A. Williams and T. Yoshihara, Chemical speciation, plant uptake, and toxicity of heavy metals in agricultural soils, J. Agric. Food Chem. 68(46) (2020) 12856−12869; https://doi.org/10.1021/acs.jafc.0c00183 Search in Google Scholar

R. Kumar, N. Ivy, S. Bhattacharya, A. Dey and P. Sharma, Coupled effects of microplastics and heavy metals on plants: Uptake, bioaccumulation, and environmental health perspectives, Sci. Total Environ. 836 (2022) Article ID 155619 (1 page); https://doi.org/10.1016/j.scitotenv.2022.155619 Search in Google Scholar

A. J. Pais-Costa, M. I. Sánchez, M. A. Taggart, A. J. Green, F. Hortas, P. A. Vinagre, J. C. Marques and M. Martinez-Haro, Trace element bioaccumulation in hypersaline ecosystems and implications of a global invasion, Sci. Total Environ. 800 (2021) Article ID 149349 (1 page); https://doi.org/10.1016/j.scitotenv.2021.149349 Search in Google Scholar

T. F. D. Castro, W. F. Carneiro, T. F. Reichel, S. Lacerda, M. R. F. Machado, K. K. C. de Souza, L. V. Resende and L. D. S. Murgas, The toxicological effects of Eryngium foetidum extracts on zebrafish embryos and larvae depend on the type of extract, dose, and exposure time, Toxicol. Res. 11(5) (2004) 891−899; https://doi.org/10.1093/toxres/tfac067 Search in Google Scholar

K. Janwitthayanuchit, P. Kupradinun, A. Rungsipipat, A. Kettawan and C. Butryee, A 24-weeks toxicity study of Eryngium foetidum Linn. leaves in mice, Toxicol. Res. 32(3) (2016) 231−237; https://doi.org/10.5487/tr.2016.32.3.231 Search in Google Scholar

Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Pharmacie, Pharmacie, autres