Accès libre

Determination of remifentanil in neonatal dried blood spots by liquid chromatography-tandem mass spectrometry

À propos de cet article

Citez

K. Fresenius LLC, Remifentanil hydrochloride for injection, for intravenous use. Highlights of prescribing information. NDA 20-630/S-005 Page 3 – Ultiva – Accessdata.fda.gov. Search in Google Scholar

J. Wise, Maternity care: Remifentanil is recommended as alternative to epidural in draft guidance, BMJ 381 (2023) Article ID 946; https://doi.org/10.1136/bmj.p946 Search in Google Scholar

S. Zuarez-Easton, O. Erez, N. Zafran, J. Carmeli, G. Garmi and R. Salim, Pharmacologic and nonpharmacologic options for pain relief during labor: an expert review, Am. J. Obstet. Gynecol., Labor and Delivery at Term – Part One: Partograms, Labor Disorders, Analgesia/Anesthesia, and Fever 228(5, Supplement) (2023) S1246–S1259; https://doi.org/10.1016/j.ajog.2023.03.003 Search in Google Scholar

A. Schnabel, N. Hahn, J. Broscheit, R. M. Muellenbach, L. Rieger, N. Roewer and P. Kranke, Remifentanil for labour analgesia: a meta-analysis of randomised controlled trials, Eur. J. Anaesthesiol. 29(4) (2012) 177–185; https://doi.org/10.1097/EJA.0b013e32834fc260 Search in Google Scholar

A. A. Melber, Y. Jelting, M. Huber, D. Keller, A. Dullenkopf, T. Girard and P. Kranke, Remifentanil patient-controlled analgesia in labour: six-year audit of outcome data of the RemiPCA SAFE Network (2010–2015), Int. J. Obstet. Anesth. 39 (2019) 12–21; https://doi.org/10.1016/j.ijoa.2018.12.004 Search in Google Scholar

P. Muddangula, H. S. Tan, C. W. Tan, W. L. Leong, R. Sultana and B. L. Sng, Satisfaction and outcomes with patient-controlled intravenous analgesia of remifentanil for labor analgesia at a specialist maternity hospital in Singapore: A retrospective observational study, Bali J. Anesthesiol. 7(2) (2023) Article ID 105 (6 pages); https://doi.org/10.4103/bjoa.bjoa_52_23 Search in Google Scholar

N. Jenkins, M. Garry and E. Lewis, Guideline For Remifentanil Patient Controlled Analgesia (PCA) For Labour. Anaesthetics Dept / Labour Ward Forum, NHS Wales; Retrieved from https://wisdom.nhs.wales/health-board-guidelines/swansea-bay-maternity-file/patient-controlled-analgesia-pca-forlabour-guideline-for-remifentanyl-swansea-bay-maternity-guideline-2021-pdf/ Search in Google Scholar

M. K. Shen, Z. F. Wu, A. B. Zhu, L. L. He, X. F. Shen, J. J. Yang and S. W. Feng, Remifentanil for labour analgesia: a double-blinded, randomised controlled trial of maternal and neonatal effects of patient-controlled analgesia versus continuous infusion, Anaesthesia 68(3) (2013) 236–244; https://doi.org/10.1111/anae.12098 Search in Google Scholar

J. Coonen, M. Marcus, E. Joosten, M. van Kleef, C. Neef, H. van Aken and W. Gogarten, Transplacental transfer of remifentanil in the pregnant ewe: Remifentanil in the pregnant ewe, Br. J. Pharmacol. 161(7) (2010) 1472–1476; https://doi.org/10.1111/j.1476-5381.2010.00783.x Search in Google Scholar

I. Ronel and C. F. Weiniger, A broadening choice for labor analgesia: remifentanil on the á la carte menu, Int. J. Obstet. Anesth. 39 (2019) 1–6; https://doi.org/10.1016/j.ijoa.2019.06.005 Search in Google Scholar

M. Van de Velde and B. Carvalho, Remifentanil for labor analgesia: an evidence-based narrative review, Int. J. Obstet. Anesth. 25 (2016) 66–74; https://doi.org/10.1016/j.ijoa.2015.12.004 Search in Google Scholar

P.-Y. Dewandre, SP22.1 Remifentanil PCIA has no place in labor analgesia, Reg. Anesth. Amp. Pain Med. 47(Suppl 1) (2022) Article ID A21 (4 pages); https://doi.org/10.1136/rapm-2022-ESRA.24 Search in Google Scholar

E. E. Sharpe and M. D. Rollins, Beyond the epidural: Alternatives to neuraxial labor analgesia, Best Pract. Res. Clin. Anaesthesiol. 36(1) (2022) 37–51; https://doi.org/10.1016/j.bpa.2022.04.005 Search in Google Scholar

R. Marr, J. Hyams and V. Bythell, Cardiac arrest in an obstetric patient using remifentanil patient-controlled analgesia, Anaesthesia 68(3) (2013) 283–287; https://doi.org/10.1111/anae.12099 Search in Google Scholar

M. A. O. Kinney, C. H. Rose, K. D. Traynor, E. Deutsch, H. U. Memon, S. Tanouye, K. W. Arendt and J. R. Hebl, Emergency bedside cesarean delivery: lessons learned in teamwork and patient safety, BMC Res. Notes 5(1) (2012) Article ID 412 (5 pages); https://doi.org/10.1186/1756-0500-5-412 Search in Google Scholar

C. Pruefer and A. Bewlay, Respiratory arrest with remifentanil patient-controlled analgesia – another case: Correspondence, Anaesthesia 67(9) (2012) 1044–1045; https://doi.org/10.1111/j.1365-2044.2012.07273.x Search in Google Scholar

J. C. Bonner and W. McClymont, Respiratory arrest in an obstetric patient using remifentanil patient-controlled analgesia, Anaesthesia 67(5) (2012) 538–540; https://doi.org/10.1111/j.1365-2044.2011.06997.x Search in Google Scholar

S. L. M. Logtenberg, M. L. Vink, M. B. Godfried, I. C. M. Beenakkers, F. G. Schellevis, B. W. Mol and C. J. Verhoeven, Serious adverse events attributed to remifentanil patient-controlled analgesia during labour in The Netherlands, Int. J. Obstet. Anesth. 39 (2019) 22–28; https://doi.org/10.1016/j.ijoa.2018.10.013 Search in Google Scholar

V. C. Ziesenitz, J. D. Vaughns, G. Koch, G. Mikus and J. N. van den Anker, Pharmacokinetics of fentanyl and its derivatives in children: A comprehensive review, Clin. Pharmacokinet. 57(2) (2018) 125–149; https://doi.org/10.1007/s40262-017-0569-6 Search in Google Scholar

A. Maroni, M.-S. Aubelle and C. Chollat, Fetal, preterm, and term neonate exposure to remifentanil: A systematic review of efficacy and safety, Pediatr. Drugs 25(5) (2023) 537–555; https://doi.org/10.1007/s40272-023-00583-w Search in Google Scholar

M. Massano, C. Incardona, E. Gerace, P. Negri, E. Alladio, A. Salomone and M. Vincenti, Development and validation of a UHPLC-HRMS-QTOF method for the detection of 132 new psychoactive substances and synthetic opioids, including fentanyl, in dried blood spots, Talanta 241 (2022) Article ID 123265; https://doi.org/10.1016/j.talanta.2022.123265 Search in Google Scholar

B. K. Matuszewski, Standard line slopes as a measure of a relative matrix effect in quantitative HPLC-MS bioanalysis, J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 830(2) (2006) 293–300; https://doi.org/10.1016/j.jchromb.2005.11.009 Search in Google Scholar

P. J. Davis, R. L. Stiller, A. S. Wilson, F. X. McGowan, T. D. Egan and K. T. Muir, In vitro remifentanil metabolism: The effects of whole blood constituents and plasma butyrylcholinesterase, Anesth. Analg. 95(5) (2002) Article ID 1305 (3 pages); https://doi.org/10.1097/00000539-200211000-00038 Search in Google Scholar

R. A. Koster, H. E. M. Vereecke, B. Greijdanus, D. J. Touw, M. M. R. F. Struys and J. W. C. Alffenaar, Analysis of remifentanil with liquid chromatography-tandem mass spectrometry and an extensive stability investigation in EDTA whole blood and acidified EDTA plasma, Anesth. Analg. 120(6) (2015) Article ID 1235 (7 pages); https://doi.org/10.1213/ANE.0000000000000643 Search in Google Scholar

International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH), ich-guideline-m10-bioanalytical-method-validation-step-5_en.pdf; Retrieved from https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-m10-bioanalytical-method-validation-step-5_en.pdf Search in Google Scholar

S. Capiau, H. Veenhof, R. A. Koster, Y. Bergqvist, M. Boettcher, O. Halmingh, B. G. Keevil, B. C. P. Koch, R. Linden, C. Pistos, L. M. Stolk, D. J. Touw, C. P. Stove and J.-W. C. Alffenaar, Official International Association for Therapeutic Drug Monitoring and Clinical Toxicology Guideline: Develop ment and validation of dried blood spot-based methods for therapeutic drug monitoring, Ther. Drug Monit. 41(4) (2019) Article ID 409 (22 pages); https://doi.org/10.1097/FTD.0000000000000643 Search in Google Scholar

N. G. L. Jager, H. Rosing, J. H. M. Schellens and J. H. Beijnen, Procedures and practices for the validation of bioanalytical methods using dried blood spots: a review, Bioanalysis 6(18) (2014) 2481–2514; https://doi.org/10.4155/bio.14.185 Search in Google Scholar

C. Daousani, V. Karalis, Y. L. Loukas, K. H. Schulpis, K. Alexiou and Y. Dotsikas, Dried blood spots in neonatal studies: A computational analysis for the role of the hematocrit effect, Pharmaceuticals 16(8) (2023) Article ID 1126 (16 pages); https://doi.org/10.3390/ph16081126 Search in Google Scholar

L. Van Hese, T. Theys, A. R. Absalom, S. Rex and E. Cuypers, Comparison of predicted and real propofol and remifentanil concentrations in plasma and brain tissue during target-controlled infusion: a prospective observational study, Anaesthesia 75(12) (2020) 1626–1634; https://doi.org/10.1111/anae.15125 Search in Google Scholar

M. Kabbaj, P. Vachon and F. Varin, Impact of peripheral elimination on the concentration-effect relationship of remifentanil in anaesthetized dogs, Br. J. Anaesth. 94(3) (2005) 357–365; https://doi.org/10.1093/bja/aei058 Search in Google Scholar

J. Park and J.-Y. Kwon, Remifentanil or dexmedetomidine for monitored anesthesia care during cataract surgery under topical anesthesia, Korean J. Anesthesiol. 63(1) (2012) 92–93; https://doi.org/10.4097/kjae.2012.63.1.92 Search in Google Scholar

A. K. Ross, P. J. Davis, G. deL Dear, B. Ginsberg, F. X. McGowan, R. D. Stiller, L. G. Henson, C. Huffman and K. T. Muir, Pharmacokinetics of remifentanil in anesthetized pediatric patients undergoing elective surgery or diagnostic procedures, Anesth. Analg. 93(6) (2001) Article ID 1393 (9 pages); https://doi.org/10.1097/00000539-200112000-00008 Search in Google Scholar

X. Lei, Y. Yu, M. Li, P. Fang, S. Gan, Y. Yao, Y. Zhou and X. Kang, The efficacy and safety of remifentanil patient-controlled versus epidural analgesia in labor: A meta-analysis and systematic review, PLoS One 17(12) (2022) e0275716 (14 pages); https://doi.org/10.1371/journal.pone.0275716 Search in Google Scholar

M. Protti, P. M. Sberna, R. Sardella, T. Vovk, L. Mercolini and R. Mandrioli, VAMS and StAGE as innovative tools for the enantioselective determination of clenbuterol in urine by LC-MS/MS, J. Pharm. Biomed. Anal. 195 (2021) Article ID 113873 (8 pages); https://doi.org/10.1016/j.jpba.2020.113873 Search in Google Scholar

J. Sikonja, J. Brecelj, M. Zerjav Tansek, B. Repic Lampret, A. Drole Torkar, S. Klemencic, N. Lipovec, V. Stefanova Kralj, S. Bertok, J. Kovac, B. Faganel Kotnik, M. Tesarova, Z. I. Remec, M. Debeljak, T. Battelino and U. Groselj, Clinical and genetic characteristics of two patients with tyrosinemia type 1 in Slovenia – A novel fumarylacetoacetate hydrolase (FAH) intronic disease-causing variant, Mol. Genet. Metab. Rep. 30 (2022) Article ID 100836 (7 pages); https://doi.org/10.1016/j.ymgmr.2021.100836 Search in Google Scholar

D. Perko, B. Repic Lampret, Z. I. Remec, M. Zerjav Tansek, A. Drole Torkar, B. Krhin, A. Bicek, A. Oblak, T. Battelino and U. Groselj, Optimizing the phenylalanine cut-off value in a newborn screening program, Genes 13(3) (2022) Article ID 517 (12 pages); https://doi.org/10.3390/genes13030517 Search in Google Scholar

eISSN:
1846-9558
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Pharmacy, other