À propos de cet article

Citez

A. R. Deshmukh, B. M. Bhawal, D. Krishnaswamy, V. V. Govande, B. A. Shinkre and A. Jayanthi, Azetidin-2-ones, synthon for biologically important compounds, Curr. Med. Chem. 11(14) (2004) 1889–1920; https://doi.org/10.2174/0929867043364874Search in Google Scholar

M. Bortolami, I. Chiarotto, L. Mattiello, R. Petrucci, D. Rocco, F. Vetica and M. Feroci, Organic electrochemistry: Synthesis and functionalization of b-lactams in the twenty-first century, Heterocycl. Commun. 27(1) (2021) 32–44; https://doi.org/10.1515/hc-2020-0121Search in Google Scholar

K. Poole, Resistance to b-lactam antibiotics, Cell. Mol. Life Sci. 61 (2004) 2200–2223; https://doi.org/10.1007/s00018-004-4060-9Search in Google Scholar

S. Y. Essack, The development of b-lactam antibiotics in response to the evolution of b-lactamases, Pharm. Res. 18 (2001) 1391–1399; https://doi.org/10.1023/A:1012272403776Search in Google Scholar

D. M. Livermore and J. D. Williams, b-lactams: Mode of Action and Mechanisms of Bacterial Resistance, in Antibiotics in Laboratory Medicine (Ed. V. Lorian), 4th ed., Williams and Wilkins, Baltimore 1996, pp. 502–577.Search in Google Scholar

C. Palomo, J. M. Aizpurua, I. Ganboa and M. Oiarbide, b-lactams as versatile intermediates in α- and b-amino acid synthesis, Synlett. 12 (2001) 1813–1826; https://doi.org/10.1055/s-2001-18733Search in Google Scholar

B. Alcaide, P. Almendros and C. Aragoncillo, b-lactams: versatile building blocks for the stereo-selective synthesis of non-b-lactam products, Chem. Rev. 107(11) (2007) 4437–4492; https://doi.org/10.1021/cr0307300Search in Google Scholar

A. K. Halve, D. Bhadauria and R. Dubey, N/C-4 substituted azetidin-2-ones: synthesis and preliminary evaluation as new class of antimicrobial agents, Bioorg. Med. Chem. Lett. 17(2) (2007) 341–345; https://doi.org/10.1016/j.bmcl.2006.10.064Search in Google Scholar

B. Hamad, The antibiotics market, Nat. Rev. Drug Discov. 9 (2010) 675–676; https://doi.org/10.1038/nrd3267Search in Google Scholar

S. Zavar, M. Zarei and M. Saraei, Synthesis of b-lactams via Staudinger reaction using N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline as a carboxylic acid activator, Synth. Commun. 46(24) (2016) 2031–2036; https://doi.org/10.1080/00397911.2016.1244691Search in Google Scholar

A. Kamath and I. Ojima, Advances in the chemistry of b-lactam and its medicinal applications, Tetrahedron 68(52) (2012) 10640–10664; https://doi.org/10.1016/j.tet.2012.07.090Search in Google Scholar

P. D. Mehta, N. P. S. Sengar and A. K. Pathak, 2-Azetidinone – a new profile of various pharmacological activities, Eur. J. Med. Chem. 45(12) (2010) 5541–5560; https://doi.org/10.1016/j.ejmech.2010.09.035Search in Google Scholar

A. Jarrahpour, P. Shirvani, V. Sinou, C. Latour and J. M. Brunel, Synthesis and biological evaluation of some new b-lactam-triazole hybrids, Med. Chem. Res. 25 (2016) 149–162; https://doi.org/10.1007/s00044-015-1474-xSearch in Google Scholar

A. Jarrahpour, P. Shirvani, V. Sinou, C. Latour and J. M. Brunel, Diastereoselective synthesis of potent antimalarial cis-b-lactam agents through a [2+2] cycloaddition of chiral imines with a chiral ketene, Eur. J. Med. Chem. 87 (2014) 364–371; http://dx.doi.org/10.1016/j.ejmech.2014.09.077Search in Google Scholar

D. A. Burnett, b-lactam cholesterol absorption inhibitors. b-lactam cholesterol absorption inhibitors, Curr. Med. Chem. 11(14) (2004) 1873–1887; https://doi.org/10.2174/0929867043364865Search in Google Scholar

J. C. Sutton, S. A. Bolton, K. S. Hartl, M.-H. Huang, G. Jacobs, W. Meng, M. Ogletree, Z. Pi, W. A. Schumacher, S. M. Seiler, W. A. Slusarchyk, U. Treuner, R. Zahler, G. Zhao and G. S. Bisacchi, Synthesis and SAR of 4-carboxy-2-azetidinone mechanism-based tryptase inhibitors, Bioorg. Med. Chem. Lett. 12(21) (2002) 3229–3233; https://doi.org/10.1016/S0960-894X(02)00688-1Search in Google Scholar

A. D. Borthwick, G. Weingarten, T. M. Haley, M. Tomaszewski, W. Wang, Z. Hu, J. Bedard, H. Jin, L. Yuen and T. S. Mansour, Design and synthesis of monocyclic b-lactams as mechanism-based inhibitors of human cytomegalovirus protease, Bioorg. Med. Chem. Lett. 8(4) (2008) 365–370; https://doi.org/10.1016/s0960-894x(98)00032-8Search in Google Scholar

C. D. Guillon, G. A. Koppel, M. J. Brownstein, M. O. Chaney, C. F. Ferris, S.-f. Lu, K. M. Fabio, M. J. Miller, N. D. Heindel, D. C. Hunden, R. D. G. Cooper, S. W. Kaldor, J. J. Skelton, B. A. Dressman, M. P. Clay, M. I. Steinberg, R. F. Bruns and N. G. Simon, Azetidinones as vasopressin V1a antagonists, Bioorg. Med. Chem. 15(5) (2007) 2054–2080; https://doi.org/10.1016/j.bmc.2006.12.031Search in Google Scholar

N. M. O’Boyle, M. Carr, L. M. Greene, O. Bergin, S. M. Nathwani, T. McCabe, D. G. Lloyd, D. M. Zisterer and M. J. Meegan, Synthesis and evaluation of azetidinone analogues of combretastatin A-4 as tubulin targeting agents, J. Med. Chem. 53(24) (2010) 8569–8584; https://doi.org/10.1021/jm101115uSearch in Google Scholar

B. K. Banik, I. Banik and F. F. Becker, Asymmetric synthesis of anticancer b-lactams via Staudinger reaction: utilization of chiral ketene from carbohydrate, Eur. J. Med. Chem. 45(2) (2010) 846–848; https://doi.org/10.1016/j.ejmech.2009.11.024Search in Google Scholar

R. Sharma, P. Samadhiya, S. D. Srivastava and S. K. Srivastava, Synthesis and biological activity of new series of N-[3-(1H-1,2,3- benzotriazol-1-yl)propyl]-2-(substituted phenyl)-3-chloro-4-oxo-1-azetidinecarboxamide, Acta Chim. Slov. 58(1) (2011) 110–119.Search in Google Scholar

T. Sperka, J. Pitlik, P. Bagossi and J. Tözsér, Beta-lactam compounds as apparently uncompetitive inhibitors of HIV-1 protease, Bioorg. Med. Chem. Lett. 15(12) (2005) 3086–3090; https://doi.org/10.1016/j.bmcl.2005.04.020Search in Google Scholar

C. Saturnino, B. Fusco, P. Saturnino, G. D. E. Martino, F. Rocco and J.-C. Lancelot, Evaluation of analgesic and anti-inflammatory activity of novel beta-lactam monocyclic compounds, Biol. Pharm. Bull. 23(5) (2000) 654–656; https://doi.org/10.1248/bpb.23.654Search in Google Scholar

R. K. Goel, M. P. Mahajan and S. K. Kulkarni, Evaluation of anti-hyperglycemic activity of some novel monocyclic b-lactams, J. Pharm. Pharm. Sci. 7(1) (2004) 80–83.Search in Google Scholar

A. Jarrahpour, E. Ebrahimi, R. Khalifeh, H. Sharghi, M. Sahraei, V. Sinou, C. Latour and J. M. Brunel, Synthesis of novel b-lactams bearing an anthraquinone moiety, and evaluation of their antimalarial activities, Tetrahedron 68(24) (2012) 4740–4744; https://doi.org/10.1016/j.tet.2012.04.011Search in Google Scholar

S. Hosseyni and A. Jarrahpour, Recent advances in b-lactam synthesis, Org. Biomol. Chem. 16 (2018) 6840–6852; https://doi.org/10.1039/C8OB01833BSearch in Google Scholar

C. R. Pitts and T. Lectka, Chemical synthesis of b-lactams: Asymmetric catalysis and other recent advances, Chem. Rev. 114(16) (2014) 7930–7953; https://doi.org/10.1021/cr4005549Search in Google Scholar

S. Deketelaere, T. Van Nguyen, C. V. Stevens and M. D’hooghe, Synthetic approaches toward monocyclic 3-amino-b-lactams, ChemistryOpen 6(3) (2017) 301–319; https://doi.org/10.1002/open.201700051Search in Google Scholar

N. Payili, S. Yennam, S. R. Rekula, C. G. Naidu, Y. Bobde and B. Ghoshc, Design, synthesis, and evaluation of the anticancer properties of novel quinone bearing carbamyl b-lactam hybrids, J. Heterocyclic Chem. 55(6) (2018) 1358–1365; https://doi.org/10.1002/jhet.3169Search in Google Scholar

L. Jiao, Y. Liang and J. Xu, Origin of the relative stereoselectivity of the b-lactam formation in the Staudinger reaction, J. Am. Chem. Soc. 128(18) (2006) 6060–6069; https://doi.org/10.1021/ja056711kSearch in Google Scholar

F. P. Cossío, A. de Cózar, S. M. Sierra, L. Casarrubios, J. G. Muntaner, B. K. Banik and D. Bandyopadhyay, Role of imine isomerization in the stereocontrol of the Staudinger reaction between ketenes and imines, RSC Adv. 12 (2021) 104–117; https://doi.org/10.1039/d1ra06114cSearch in Google Scholar

T. C. Malig, D. Yu and J. E. Hein, A revised mechanism for the Kinugasa reaction, J. Am. Chem. Soc. 140(29) (2018) 9167–9173; https://doi.org/10.1021/jacs.8b04635Search in Google Scholar

F. Toda, H. Miyamoto, M. Inoue, S. Yasaka and I. Matijasic, Enantioselective photocyclization of amides to beta-lactam derivatives in inclusion crystals with an optically active host, J. Org. Chem. 65(9) (2000) 2728–2732; https://doi.org/10.1021/jo991832mSearch in Google Scholar

Z. Wang, J. Ni, Y. Kuninobu and M. Kanai, Copper-catalyzed intramolecular C(sp3)H and C(sp2) H amidation by oxidative cyclization, Angew. Chem. Int. Ed. 53(13) (2014) 3496–3499; https://doi.org/10.1002/anie.201311105Search in Google Scholar

S. France, A. Weatherwax, A. E. Taggi and T. Lectka, Advances in the catalytic, asymmetric synthesis of b-lactams, Acc. Chem. Res. 37(8) (2004) 592–600; https://doi.org/10.1021/ar030055gSearch in Google Scholar

T. Dražić, M. Roje, M. Jurin and G. Pescitelli, Synthesis, separation and absolute configuration determination by ECD Spectroscopy and TDDFT calculations of 3-amino-b-lactams and derived guanidines, Eur. J. Org. Chem. 2016(24) (2016) 4189–4199; https://doi.org/10.1002/ejoc.201600641Search in Google Scholar

Clinical and Laboratory Standards Institute, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed., CLSI standard M07, CLSI, Wayne (PA, USA) 2018; https://clsi.org/media/1928/m07ed11_sample.pdf; last access date April 6, 2020Search in Google Scholar

J. M. Andrews, Determination of minimum inhibitory concentrations, J. Antimicrob. Chemother. 48(Suppl. S1) (2001) 5–16; https://doi.org/10.1093/JAC/48.SUPPL_1.5Search in Google Scholar

Clinical and Laboratory Standards Institute, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 3rd ed., CLSI standard M38, CLSI, Wayne (PA, USA) 2017; https://clsi.org/media/1894/m38ed3_sample.pdf; last access date April 27, 2020Search in Google Scholar

M. Hranjec, M. Kralj, I. Piantanida, M. Sedić, L. Šuman, K. Pavelić and G. Karminski-Zamola, Novel cyano- and amidino-substituted derivatives of styryl-2-benzimidazoles and benzimidazo[1,2-a]quinolines. synthesis, photochemical synthesis, DNA binding and antitumor evaluation, Part 3, J. Med. Chem. 50(23) (2007) 5696–5711; https://doi.org/10.1021/jm070876hSearch in Google Scholar

M. Hranjec, I. Piantanida, M. Kralj, L. Šuman, K. Pavelić and G. Karminski-Zamola, Novel amid-ino-substituted thienyl- and furylvinyl-benzimidazole derivatives and their photochemical conversion into corresponding diaza-cyclopenta[c]fluorenes. Synthesis, interactions with DNA and RNA and antitumor evaluation, J. Med. Chem. 51(16) (2008) 4899–4910; https://doi.org/10.1021/jm8000423Search in Google Scholar

M. R. Boyd and K. D. Paull, Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen, Drug Dev. Res. 34(2) (1995) 91–109; https://doi.org/10.1002/ddr.430340203Search in Google Scholar

M. S. Lowless, M. Waldman, R. Franczkiewicz and R. D. Clark, Using Chemoinformatics in Drug Discovery, in New Approaches to Drug Discovery, Handbook of Experimental Pharmacology (Eds. U. Nielsch, U. Fuhrmann and S. Jaroch), Vol. 232, Springer Int. Publ. Switzerland, Cham 2016, pp. 232, 139–170.Search in Google Scholar

H. Yang, C. Lou, L. Sun, J. Li, Y. Cai, Z. Wang, W. Li, G. Liu and Y. Tang, admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties, Bioinformatics 35(6) (2019) 1067–1069; https://doi.org/10.1093/bioinformatics/bty707Search in Google Scholar

D. A. Filimonov and V. V. Poroikov, Probabilistic Approach in Activity Prediction, in Chemoinformatics Approaches to Virtual Screening (Eds. A. Varnek and A. Tropsha), RSC Publishing, Cambridge (UK) 2008, pp. 182–216.Search in Google Scholar

A. Daina, O. Michielin and V. Zoete, SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules, Nucleic Acids Res. 47(W1) (2019) W357– W364; https://doi.org/10.1093/nar/gkz382Search in Google Scholar

D. Bandyopadhyay, J. Cruz and B. K. Banik, Novel synthesis of 3-pyrrole substituted b-lactams via microwave-induced bismuth nitrate-catalyzed reaction, Tetrahedron 68(52) (2012) 10686–10695; https://doi.org/10.1016/j.tet.2012.06.009Search in Google Scholar

K. Radolović, I. Habuš and B. Kralj, New thiazolidinone and triazinethione conjugates derived from amino-b-lactams, Heterocycles 78(7) (2009) 1729–1759; https://doi.org/10.3987/COM-09-11668Search in Google Scholar

C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 23(1–3) (1997) 3–25; https//doi.org/10.1016/S0169-409X(96)00423-1Search in Google Scholar

C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 64(Suppl.) (2012) 4–17; https://doi.org/10.1016/j.addr.2012.09.019Search in Google Scholar

C. A. Lipinski, Drug-like properties and the causes of poor solubility and poor permeability, J. Pharmacol. Toxicol. Method 44(1) (2000) 235–249; https//doi.org/10.1016/s1056-8719(00)00107-6Search in Google Scholar

D. F. Veber, S. R. Johnson, H. Y. Cheng, B. R. Smith, K. W. Ward and K. D. Kopple, Molecular properties that influence the oral bioavailability of drug candidates, J. Med. Chem. 45(12) (2002) 2615–2623; https://doi.org/10.1021/jm020017nSearch in Google Scholar

S. Lobo, Is there enough focus on lipophilicity in drug discovery?, Expert Opin. Drug Discov. 15(3) (2019) 261–263; https://doi.org/10.1080/17460441.2020.1691995Search in Google Scholar

R. Haddad-Tóvolli, N. R. V. Dragano, A. F. S. Ramalho and L. A. Velloso, Development and function of the blood-brain barrier in the context of metabolic control, Front. Neurosci. 11 (2017) Article ID 224 (12 pages); https://www.frontiersin.org/articles/10.3389/fnins.2017.00224Search in Google Scholar

E. Stavropoulou, G. G. Pircalabioru and E. Bezirtzoglou, The role of cytochromes P450 in infection, Front. Immunol. 9 (2018) Article ID 89 (7 pages); https://doi.org/10.3389/fimmu.2018.00089Search in Google Scholar

A. M. McDonnell and C. H. Dang, Basic review of the cytochrome p450 system, J. Adv. Pract. Oncol. 4 (2013) 263–268; https://doi.org/10.6004/jadpro.2013.4.4.7Search in Google Scholar

F. P. Guengerich, Cytochrome P450 and chemical toxicology, Chem. Res. Toxicol. 21(1) (2008) 70–83; https://doi.org/10.1021/tx700079zSearch in Google Scholar

B. Testa, A. Pedretti and G. Vistoli, Reactions and enzymes in the metabolism of drugs and other xenobiotics, Drug Discov. Today 17(11–12) (2012) 549–560; https://doi.org/10.1016/j.drudis.2012.01.017Search in Google Scholar

A. F. El-Kattan and M. V. S. Varma, Navigating transporter sciences in pharmacokinetics characterization using the extended clearance classification system, Drug. Metab. Dispos. 46(5) (2018) 729–739; https://doi.org/10.1124/dmd.117.080044Search in Google Scholar

M. V. Varma, S. J. Steyn, C. Allerton and A. F. El-Kattan, Predicting clearance mechanism in drug discovery: Extended clearance classification system (ECCS), Pharm. Res. 32 (2015) 3785–3802; https://doi.org/10.1007/s11095-015-1749-4Search in Google Scholar

eISSN:
1846-9558
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Pharmacy, other