Accès libre

Simultaneous determination of macrolides in water samples by solid-phase extraction and capillary electrophoresis

À propos de cet article

Citez

M. I. B. Perez, L. C. Rodriguez and C. Cruces-Blanco, Analysis of different beta-lactams antibiotics in pharmaceutical preparations using micellar electrokinetic capillary chromatography, J. Pharm. Biomed. Anal. 43(2) (2007) 746–752; https://doi.org/10.1016/j.jpba.2006.07.035 Search in Google Scholar

M. Gros, S. Rodrigez-Mozaz and D. Barcelo, Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry, J. Chromatogr. A 1292 (2013) 173–188; https://doi.org/10.1016/j.chroma.2012.12.072 Search in Google Scholar

M. Čizmić, S. Babić and M. Kaštelan-Macan, Multi-class determination of pharmaceuticals in wastewaters by solid-phase extraction and liquid chromatography tandem mass spectrometry with matrix effect study, Environ. Sci. Pollut. Res. 24 (2017) 20521–20539; https://doi.org/10.1007/s11356-017-9660-7 Search in Google Scholar

W. C. Li, Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil, Environ. Pollut. 187 (2014) 193–201; https://doi.org/10.1016/j.envpol.2014.01.015 Search in Google Scholar

I. Michael, L. Rizzo, C. S. McArdell, C. M. Manaia, C. Merlin, T. Schwartz, C. Dagot and D. Fatta-Kassinos, Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review, Water Res. 47 (2013) 957–995; https://doi.org/10.1016/j.watres.2012.11.027 Search in Google Scholar

J. L. Zhou, K. Maskaoui and A. Lufadeju, Optimization of antibiotic analysis in water by solid-phase extraction and high performance liquid chromatography-mass spectrometry/mass spectrometry, Anal. Chim. Acta 731 (2012) 32–39; https://doi.org/10.1016/j.aca.2012.04.021 Search in Google Scholar

D. J. Lapworth, N. Baran, M. E. Stuart and R. S. Ward, Emerging organic contaminants in ground-water: A review of sources, fate and occurrence, Environ. Pollut. 163 (2012) 287–303; https://doi.org/10.1016/j.envpol.2011.12.034 Search in Google Scholar

D. Mutavdžić Pavlović, K. Nikšić, S. Livazović, I. Brnardić and A. Anžlovar, Preparation and application of sulfaguanidine-imprinted polymer on solid-phase extraction of pharmaceuticals from water, Talanta 131 (2015) 99–107; https://doi.org/10.1016/j.talanta.2014.06.065 Search in Google Scholar

W. J. Sim, J. W. Lee, E. S. Lee, S. K. Shin, S. R. Hwang and J. E. Oh, Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures, Chemosphere 82 (2011) 179–186; https://doi.org/10.1016/j.chemosphere.2010.10.026 Search in Google Scholar

P. J. Phillips, S. G. Smith, D. W. Kolpin, S. D. Zaugg, H. T. Buxton, E. T. Furlong, K. Esposito and B. Stinson, Pharmaceutical formulation facilities as sources of opioids and other pharmaceuticals to wastewater treatment plant effluents, Environ. Sci. Technol. 44 (2010) 4910–4916; https://doi.org/10.1021/es100356f Search in Google Scholar

D. G. Joakim Larsson, C. de Pedro and N. Paxeus, Effluent from drug manufactures contains extremely high levels of pharmaceuticals, J. Hazard Mater. 148 (2007) 751–755; https://doi.org/10.1016/j.jhazmat.2007.07.008 Search in Google Scholar

R. Cañadas, R. M. Garcinuño Martínez, G. Paniagua González and P. Fernández Hernando, Development of a molecularly imprinted polymeric membrane for determination of macrolide antibiotics from cow milk, Polymer 249 (2022) Article ID 124843 (8 pages); https://doi.org/10.1016/j.polymer.2022.124843 Search in Google Scholar

S. Babić, D. Mutavdžić Pavlović, D. Ašperger, M. Periša, M. Zrnčić, A. J. M. Horvat and M. Kaštelan-Macan, Determination of multi-class pharmaceuticals in wastewater by liquid chromatography-tandem mass spectrometry (LC–MS–MS), Anal. BioAnal. Chem. 398 (2010) 1185–1194; https://doi.org/10.1007/s00216-010-4004-1 Search in Google Scholar

S. Yang and K. H. Carlson, Solid-phase extraction–high-performance liquid chromatography–ion trap mass spectrometry for analysis of trace concentrations of macrolide antibiotics in natural and waste water matrices, J. Chromatogr. A. 1038 (2004) 141–155; https://doi.org/10.1016/j.chroma.2004.02.084 Search in Google Scholar

M. J. Gonzalez de la Huebra and U. Vincent, Analysis of macrolide antibiotics by liquid chromatography, J. Pharm. Biomed. Anal. 39 (2005) 376–398; https://doi.org/10.1016/j.jpba.2005.04.031 Search in Google Scholar

J. Sastre Torano and H. J. Guchelaar, Quantitative determination of the macrolide antibiotics erythromycin, roxithromycin, azithromycin and clarithromycin in human serum by high-performance liquid chromatography using pre-column derivatization with 9-fluorenylmethyloxycarbonyl chloride and fluorescence detection, J. Chromatogr. B 720 (1998) 89–97; https://doi.org/10.1016/s0378-4347(98)00456-3 Search in Google Scholar

P. Edder, L. Coppex, A. Cominoli and C. Corvi, Analysis of erythromycin and oleandomycin residues in food by high-performance liquid chromatography with fluorometric detection, Food Addit. Contam. 19 (2002) 232–240; https://doi.org/10.1080/02652030110083702 Search in Google Scholar

M. J. Gonzalez de la Huebra, G. Bordin and A. R. Rodriguez, Comparative study of coulometric and amperometric detection for the determination of macrolides in human urine using high-performance liquid chromatography, Anal. BioAnal. Chem. 375 (2003) 1031–1037; https://doi.org/10.1007/s00216-003-1801-9 Search in Google Scholar

J. Wang, Analysis of macrolide antibiotics, using liquid chromatography-mass specrometry, in food, biological and environmental matrices, Mass Spectrom. Rev. 28 (2009) 50–92; https://doi.org/10.1002/mas.20189 Search in Google Scholar

M. J. Nozal, J. L. Bernal, M. T. Martín, J. J. Jiménez, J. Bernal and M. Higes, Trace analysis of tiamulin in honey by liquid chromatography-diode array-electrospray ionization mass spectrometry detection, J. Chromatogr. A 1116 (2006) 102–108; https://doi.org/10.1016/j.chroma.2006.03.028 Search in Google Scholar

M. M. Dadouch, Y. Ladner and C. Perrin, Analysis of monoclonal antibodies by capillary electrophoresis: Sample preparation, separation, and detection, Separations 8(1) (2021) Article ID 4 (30 pages); https://doi.org/10.3390/separations8010004 Search in Google Scholar

S. Štěpánová and V. Kašička, Applications of capillary electromigration methods for separation and analysis of proteins (2017–mid 2021) – A review, Anal. Chim. Acta 1209 (2022) Article ID 339447; https://doi.org/10.1016/j.aca.2022.339447 Search in Google Scholar

S. Suntornsuk and O. Anurukvorakun, Sensitivity enhancement in capillary electrophoresis and their applications for analyses of pharmaceutical and related biochemical substances, Electrophoresis 43(9-10) (2022) 939-954; https://doi.org/10.1002/elps.202100236 Search in Google Scholar

R. Voeten, I. Ventouri, I. R. Haselberg and G. Somsen, Capillary electrophoresis: trends and recent advances, Anal. Chem. 90(3) (2018) 1464–1481; https://doi.org/10.1021/acs.analchem.8b00015 Search in Google Scholar

M. Wang, Q. Gong, W. Liu, S. Tan, J. Xiao and C. Chuanpina, Applications of capillary electrophoresis in the fields of environmental, pharmaceutical, clinical, and food analysis (2019–2021), J. Sep. Sci. 45(11) (2022) 1918–1941; https://doi.org/10.1002/jssc.202100727 Search in Google Scholar

S. Pascual-Caro, F. Borrull, M. Calull and C. Aguilar, Recent chromatographic and electrophoretic based methods for determining drugs of abuse in urine and oral fluid: A review from 2018 to June 2021, Trends Anal. Chem. 156 (2022) Article ID 116705 (16 pages); https://doi.org/10.1016/j.trac.2022.116705 Search in Google Scholar

R. López-Cabeza and A. Francioso, Chiral pesticides with asymmetric sulfur: Extraction, separation, and determination in different environmental matrices, Separations 9(2) (2022) Article ID 29 (19 pages); https://doi.org/10.3390/separations9020029 Search in Google Scholar

E. Pobožy and M. Trojanowicz, Application of capillary electrophoresis for determination of inorganic analytes in waters, Molecules 26(22) (2021) Article ID 6972 (37 pages); https://doi.org/10.3390/molecules26226972 Search in Google Scholar

Y. Teng, C. Gu, Z. Chen, H. Jiang, Y. Xiong, D. Liu and D. Xiao, Advances and applications of chiral resolution in pharmaceutical field, Chirality 34(8) (2022) 1094–1119; https://doi.org/10.1002/chir.23453 Search in Google Scholar

T. Zhou, H. Li, M. Shang, D. Sun, C. Liu and G. Che, Recent analytical methodologies and analytical trends for riboflavin (vitamin B2) analysis in food, biological and pharmaceutical samples, Trends Anal. Chem. 143 (2021) Article ID 116412 (17 pages); https://doi.org/10.1016/j.trac.2021.116412 Search in Google Scholar

G. Pajchel and S. Tyski, Adaptation of capillary electrophoresis to piperacillin drug analysis, J. Chromatogr. A 846 (1999) 223–226; https://doi.org/10.1016/S0021-9673(99)00544-0 Search in Google Scholar

P. Puig, F. Borrull, M. Calull and C. Aguilar, Recent advances in coupling solid-phase extraction and capillary electrophoresis (SPE–CE), Trends Anal. Chem. 26(7) (2007) 664–678; https://doi.org/j.trac.2007.05.010 Search in Google Scholar

D. Mutavdžić Pavlović, S. Babić, A. J. M. Horvat and M. Kaštelan-Macan, Sample preparation in analysis of pharmaceuticals, Trends Anal. Chem. 26(11) (2007) 1062–1075; https://doi.org/10.1016/j.trac.2007.09.010 Search in Google Scholar

M. Zrnčić, S. Babić and D. Mutavdžić Pavlović, Determination of thermodynamic pKa values of pharmaceuticals from five different groups using capillary electrophoresis, J. Sep. Sci. 38(7) (2005) 1232–1239; https://doi.org/10.1002/jssc.201401057 Search in Google Scholar

EPIweb 4.0 (http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm), February 2022. Search in Google Scholar

EURACHEM/CITAC Guide Quantifying Uncertainty in Analytical Measurement (Ed. S. L. R. Ellison and A. Williams), 3rd ed., 2012; https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf Search in Google Scholar

T. Tomić, N. Uzorinac Nasipak and S. Babić, Estimating measurement uncertainty in high-performance liquid chromatography methods, Accred. Qual. Assur. 17 (2012) 291–300; https://doi.org/10.1007/s00769-011-0872-0 Search in Google Scholar

eISSN:
1846-9558
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Pharmacy, other