1. bookVolume 72 (2022): Edition 3 (September 2022)
Détails du magazine
License
Format
Magazine
eISSN
1846-9558
Première parution
28 Feb 2007
Périodicité
4 fois par an
Langues
Anglais
access type Accès libre

Design and development of novel 1,2,3-triazole chalcone derivatives as potential anti-osteosarcoma agents via inhibition of PI3K/Akt/mTOR signalling pathway

Publié en ligne: 13 Apr 2022
Volume & Edition: Volume 72 (2022) - Edition 3 (September 2022)
Pages: 389 - 402
Accepté: 14 Dec 2021
Détails du magazine
License
Format
Magazine
eISSN
1846-9558
Première parution
28 Feb 2007
Périodicité
4 fois par an
Langues
Anglais
Abstract

Osteosarcoma (OS) is an uncommon tumour that mainly affects bone in children and adolescents. The current treatment options of OS are of limited significance due to their immense side effects. In the present manuscript, we have developed a novel series of 1,2,3-triazole chalcone derivatives as potential agents against OS. The compounds were synthesized and evaluated for their PI3K and mTOR inhibitory activity using luminescent kinase assay, and Lance ultra assay, resp. The entire set of compounds showed significant to moderate inhibition of both kinases in the nanomolar range. The three most active compounds: 4e (N-(4-(3-(1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)acryloyl)phenyl)-4-nitrobenzamide), 4f (N-(4-(3-(1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)acryloyl)phenyl)-4-chlorobenzamide) and 4g (4-bromo-N-(4-(3-(1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)acryloyl)phenyl)benzamide), were evaluated for anticancer activity against human OS cancer cell line (MG-63), liver cancer cell line (HepG2), lung cancer cell line (A549) and cervical cancer (HeLa), using MTT assay. Among the tested series, compound 4e showed a better inhibitory profile than gedatolisib against PI3K and was approximately comparable to that of gedatolisib against mTOR. The most significant inhibitory activity was observed for compound 4e against all cell lines (MG-63, HepG2, A549 and HeLa), still somewhat lower to comparable to that of gedatolisib, but with the highest potency against MG-63 cells. Compound 4e was further tested for anti-cancer activity against other OS cells and showed to be equipo-tent to gedatolisib against U2OS and Saos-2 cells. Moreover, it was also found non-toxic to normal cells (BEAS-2B and MCF 10A). The effect of compound 4e was further determined on apoptosis of Saos-2 cells by Annexin-PI assay, where it significantly amplified the percentage of apoptotic cells. Novel 1,2,3-triazole chalcone derivatives are potential agents against OS.

Keywords

1. A. Misaghi, A. Goldin, M. Awad and A. A. Kulidjian, Osteosarcoma: A comprehensive review, SICOT J. 4 (2018) Article ID 12; https://doi.org/10.1051/sicotj/201702810.1051/sicotj/2017028589044829629690 Search in Google Scholar

2. S. S. Bielack, S. Hecker-Nolting, C. Blattmann and L. Kager, Advances in the management of osteosarcoma, F1000Res. 5 (2016) Article ID 2767; https://doi.org/10.12688/f1000research.9465.110.12688/f1000research.9465.1513008227990273 Search in Google Scholar

3. R. A. Durfee, M. Mohammed and H. H. Luu, Review of osteosarcoma and current management, Rheumatol. Ther. 3 (2016) 221–243; https://doi.org/10.1007/s40744-016-0046-y10.1007/s40744-016-0046-y512797027761754 Search in Google Scholar

4. J. Zhang, P. L. Yang and N. S. Gray, Targeting cancer with small molecule kinase inhibitors, Nat. Rev. Cancer 9 (2009) 28–39; https://doi.org/10.1038/nrc255910.1038/nrc255919104514 Search in Google Scholar

5. T. G. Davies, J. Bentley, C. E. Arris, F. T. Boyle, N. J. Curtin, J. A. Endicott, A. E. Gibson, B. T. Golding, R. J. Griffin, I. R. Hardcastle, P. Jewsbury, L. N. Johnson, V. Mesguiche, D. R. Newell, M. E. M. Noble, J. A. Tucker, L. Wang and H. J. Whitfield, Structure-based design of a potent purine-based cyclin-dependent kinase inhibitor, Nat. Struct. Biol. 9 (2002) 745–749; https://doi.org/10.1038/nsb84210.1038/nsb84212244298 Search in Google Scholar

6. J. K. Srivastava, G. G. Pillai, H. R. Bhat, A. Verma and U. P. Singh, Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating epidermal growth factor receptor tyrosine kinase, Sci. Rep. 7 (2017) Article ID 5851 (18 pages); https://doi.org/10.1038/s41598-017-05934-510.1038/s41598-017-05934-5551756228724908 Search in Google Scholar

7. L. Jakobsson, J. Kreuger, K. Holmborn, L. Lundin, I. Eriksson, L. Kjellén and L. Claesson-Welsh, Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis, Dev. Cell 10 (2006) 625–634; https://doi.org/10.1016/j.devcel.2006.03.00910.1016/j.devcel.2006.03.00916678777 Search in Google Scholar

8. G. Garg, A. Khandelwal and B. S. J. Blagg, Chapter three – Anticancer inhibitors of Hsp90 function: Beyond the usual suspects, Adv. Cancer Res. 129 (2016) 51–88; https://doi.org/10.1016/bs.acr.2015.12.00110.1016/bs.acr.2015.12.001589242226916001 Search in Google Scholar

9. H. Pópulo, J. M. Lopes and P. Soares, The mTOR signalling pathway in human cancer, Int. J. Mol. Sci. 13(2) (2012) 1886–1918; https://doi.org/10.3390/ijms1302188610.3390/ijms13021886329199922408430 Search in Google Scholar

10. U. P. Singh, J. K. Srivastava and H. R. Bhat, 161P Discovery of novel 1,3,5-triazine-thiourea based dual PI3K/mTOR inhibitor against non-small cell lung cancer (NSCLC), Ann. Oncol. 27(Suppl. 9) (2016) ix50; https://doi.org/10.1093/annonc/mdw579.01310.1093/annonc/mdw579.013 Search in Google Scholar

11. N. Hay, The Akt-mTOR tango and its relevance to cancer, Cancer Cell 8(3) (2005) 179–183; https://doi.org/10.1016/j.ccr.2005.08.00810.1016/j.ccr.2005.08.00816169463 Search in Google Scholar

12. L. Zhang, J. Wu, M. T. Ling, L. Zhao and K.-N. Zhao, The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses, Mol. Cancer 14 (2015) Article ID 87 (13 pages); https://doi.org/10.1186/s12943-015-0361-x10.1186/s12943-015-0361-x449856026022660 Search in Google Scholar

13. X. Liu, Y. Xu, Q. Zhou, M. Chen, Y. Zhang, H. Liang, J. Zhao, W. Zhong and M. Wang, PI3K in cancer: its structure, activation modes and role in shaping tumor microenvironment, Future Oncol.14(7) (2017) 665–674; https://doi.org/10.2217/fon-2017-058810.2217/fon-2017-058829219001 Search in Google Scholar

14. B. Wang and J. Li, Piceatannol suppresses the proliferation and induced apoptosis of osteosarcoma cells through PI3K/AKT/MTOR pathway, Cancer Manag. Res. 12 (2020) 2631–2640; https://doi.org/10.2147/CMAR.S23817310.2147/CMAR.S238173718270332368141 Search in Google Scholar

15. Y. Zhang, Q. Weng, J. Han and J. Chen, Alantolactone suppresses human osteosarcoma through the PI3K/AKT signaling pathway, Mol. Med. Rep. 21(2) (2020) 675–684; https://doi.org/10.3892/mmr.2019.1088210.3892/mmr.2019.10882694791431974628 Search in Google Scholar

16. M. W. Bishop and K. A. Janeway, Emerging concepts for PI3K/mTOR inhibition as a potential treatment for osteosarcoma, F1000Res. 5 (2016) Article ID 1590 (6 pages); https://doi.org/10.12688/F1000RESEARCH.8228.110.12688/f1000research.8228.1493781727441088 Search in Google Scholar

17. J. A. Perry, A. Kiezun, P. Tonzi, E. M. Van Allen, S. L. Carter, S. C. Baca, G. S. Cowley, A. S. Bhatt, E. Rheinbay, C. S. Pedamallu, E. Helman, A. Taylor-Weiner, A. McKenna, D. S. DeLuca, M. S. Lawrence, L. Ambrogio, C. Sougnez, A. Sivachenko, L. D. Walensky, N. Wagle, J. Mora, C. de Torres, C. Lavarino, S. Dos Santos Aguiar, J. A. Yunes, S. R. Brandalise, G. E. Mercado-Celis, J. Melendez-Zajgla, R. Cárdenas-Cardós, L. Velasco-Hidalgo, C. W. M. Roberts, L. A. Garraway, C. Rodriguez-Galindo, S. B. Gabriel, E. S. Lander, T. R. Golub, S. H. Orkin, G. Getz and K. A. Janeway, Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma, Proc. Natl. Acad. Sci. USA 111(51) (2014) E5564–E5573; https://doi.org/10.1073/pnas.141926011110.1073/pnas.1419260111428063025512523 Search in Google Scholar

18. M. Penel-Page, I. Ray-Coquard, J. Larcade, M. Girodet, L. Bouclier, M. Rogasik, N. Corradini, N. Entz-Werle, L. Brugieres, J. Domont, C. Lervat, S. Piperno-Neumann, H. Pacquement, J.-O. Bay, J.-C. Gentet, A. Thyss, L. Chaigneau, B. Narciso, H. Cornille, J.-Y. Blay and P. Marec-Bérard, Off-label use of targeted therapies in osteosarcomas: data from the French registry OUTC’S (Observatoire de l’Utilisation des Thérapies Ciblées dans les Sarcomes), BMC Cancer 15 (2015) Article ID 854 (9 pages); https://doi.org/10.1186/s12885-015-1894-510.1186/s12885-015-1894-5463596826541413 Search in Google Scholar

19. K. Singh, A. Gangrade, A. Jana, B. B. Mandal and N. Das, Design, synthesis, characterization, and antiproliferative activity of organoplatinum compounds bearing a 1,2,3-triazole ring, ACS Omega 4 (2019) 835–841; https://doi.org/10.1021/acsomega.8b0284910.1021/acsomega.8b02849 Search in Google Scholar

20. N. S. Goud, V. Pooladanda, G. S. Mahammad, P. Jakkula, S. Gatreddi, I. A. Qureshi, R. Alvala, C. Godugu and M. Alvala, Synthesis and biological evaluation of morpholines linked coumarintriazole hybrids as anticancer agents, Chem. Biol. Drug Des. 94(5) (2019) 1919–1929; https://doi.org/10.1111/cbdd.1357810.1111/cbdd.1357831169963 Search in Google Scholar

21. G. Silva, M. Marins, A. L. Fachin, S.-H. Lee and S. J. Baek, Anti-cancer activity of trans-chalcone in osteosarcoma: Involvement of Sp1 and p53, Mol. Carcinog. 55(10) (2016) 1438–1448; https://doi.org/10.1002/mc.2238610.1002/mc.2238626294168 Search in Google Scholar

22. T. Ji, C. Lin, L. S. Krill, R. Eskander, Y. Guo, X. Zi and B. H. Hoang, Flavokawain B, a kava chalcone, inhibits growth of human osteosarcoma cells through G2/M cell cycle arrest and apoptosis, Mol. Cancer 12 (2013) Article ID 55 (11 pages); https://doi.org/10.1186/1476-4598-12-5510.1186/1476-4598-12-55368160323764122 Search in Google Scholar

23. D. Dheer, V. Singh and R. Shankar, Medicinal attributes of 1,2,3-triazoles: Current developments, Bioorg. Chem. 71 (2017) 30–54; https://doi.org/10.1016/j.bioorg.2017.01.01010.1016/j.bioorg.2017.01.01028126288 Search in Google Scholar

24. K. Bozorov, J. Zhao and H. A. Aisa, 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview, Bioorg. Med. Chem. 27(16) (2019) 3511–3531; https://doi.org/10.1016/j.bmc.2019.07.00510.1016/j.bmc.2019.07.005718547131300317 Search in Google Scholar

25. Z. Xu, S.-J. Zhao and Y. Liu, 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships, Eur. J. Med. Chem. 183 (2019) Article ID 111700; https://doi.org/10.1016/j.ejmech.2019.11170010.1016/j.ejmech.2019.11170031546197 Search in Google Scholar

26. S. Vanaparthi, R. Bantu, N. Jain, S. Janardhan and L. Nagarapu, Synthesis and anti-proliferative activity of a novel 1,2,3-triazole tethered chalcone acetamide derivatives, Bioorg. Med. Chem. Lett. 30(16) (2020) Article ID 127304.; https://doi.org/10.1016/j.bmcl.2020.12730410.1016/j.bmcl.2020.12730432631524 Search in Google Scholar

27. S. Li, J. Wawrzyniak, Y. Queneau and L. Soulère, 2-Substituted aniline as a simple scaffold for LuxR-regulated QS modulation, Molecules 22(12) (2017) Article ID 2090 (10 pages); https://doi.org/10.3390/molecules2212209010.3390/molecules22122090614992229186042 Search in Google Scholar

28. J. Hu, Y. Zhang, N. Tang, Y. Lu, P. Guo and Z. Huang, Discovery of novel 1,3,5-triazine derivatives as potent inhibitor of cervical cancer via dual inhibition of PI3K/mTOR, Bioorg. Med. Chem. 32 (2021) Article ID 115997; https://doi.org/10.1016/j.bmc.2021.11599710.1016/j.bmc.2021.11599733440319 Search in Google Scholar

29. T.-T. Wu, Q.-Q. Guo, Z.-L. Chen, L.-L. Wang, Y. Du, R. Chen, Y.-H. Mao, S.-G. Yang, J. Huang, J.-T. Wang, L. Wang, L. Tang and J. Q. Zhang, Design, synthesis and bioevaluation of novel substituted triazines as potential dual PI3K/mTOR inhibitors, Eur. J. Med. Chem. 204 (2020) Article ID 112637; https://doi.org/10.1016/j.ejmech.2020.11263710.1016/j.ejmech.2020.11263732717477 Search in Google Scholar

30. C.-H. R. Or, H.-L. Su, W.-C. Lee, S.-Y. Yang, C. Ho and C.-C. Chang, Diphenhydramine induces melanoma cell apoptosis by suppressing STAT3/MCL-1 survival signaling and retards B16-F10 melanoma growth in vivo, Oncol. Rep. 36(6) (2016) 3465–3471; https://doi.org/10.3892/or.2016.520110.3892/or.2016.520127779705 Search in Google Scholar

31. H. F. Ashour, L. A. Abou-zeid, M. A.-A. El-Sayed and K. B. Selim, 1,2,3-Triazole-chalcone hybrids: Synthesis, in vitro cytotoxic activity and mechanistic investigation of apoptosis induction in multiple myeloma RPMI-8226, Eur. J. Med. Chem. 189 (2020) Article ID 112062; https://doi.org/10.1016/j.ejmech.2020.11206210.1016/j.ejmech.2020.11206231986406 Search in Google Scholar

32. D.-J. Fu, S.-Y. Zhang, Y.-C. Liu, X.-X. Yue, J.-J. Liu, J. Song, R.-H. Zhao, F. Li, H.-H. Sun, Y.-B. Zhang and H.-M. Liu, Design, synthesis and antiproliferative activity studies of 1,2,3-triazole-chalcones, MedChemComm 7(8) (2016) 1664–1671; https://doi.org/10.1039/c6md00169f10.1039/C6MD00169F Search in Google Scholar

33. S.-Y. Zhang, D.-J. Fu, X.-X. Yue, Y.-C. Liu, J. Song, H.-H. Sun, H.-M. Liu and Y.-B. Zhang, Design, synthesis and structure-activity relationships of novel chalcone-1,2,3-triazole-azole derivates as antiproliferative agents, Molecules 21(5) (2016) Article ID 653 (13 pages); https://doi.org/10.3390/molecules2105065310.3390/molecules21050653627451727213317 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo