1. bookVolume 72 (2022): Edition 2 (June 2022)
Détails du magazine
License
Format
Magazine
eISSN
1846-9558
Première parution
28 Feb 2007
Périodicité
4 fois par an
Langues
Anglais
access type Accès libre

Potential of germanium-based compounds in coronavirus infection

Publié en ligne: 30 Dec 2021
Volume & Edition: Volume 72 (2022) - Edition 2 (June 2022)
Pages: 245 - 258
Accepté: 18 May 2021
Détails du magazine
License
Format
Magazine
eISSN
1846-9558
Première parution
28 Feb 2007
Périodicité
4 fois par an
Langues
Anglais
Abstract

The first germanium compounds which exhibited immunomodulatory and antiviral effects were sesquioxane-type germanates. To date, more than a dozen compounds containing germanium have been synthesized and are being actively studied. They include germanium carboxylates and citrates, complexes of germanium with resveratrol, daphnetin, mangiferin, chrysin, quercetin, ascorbic and nicotinic acids, amino acids, gamma-lactones, germanium-containing spirulina, yeast and others. Germanium-based compounds have shown the ability to influence the replication of various DNA/RNA viruses, stimulate the body’s natural resistance, prevent the development of metabolic intoxication of various origin, increase the efficacy of vaccines, and prevent the development of excessive accumulation of reactive oxygen species, which plays a decisive role in the development of inflammatory response caused by a viral infection. It seems reasonable to say that germanium-based complex compounds effectively contribute to the preservation of high--energy bonds in the form of ATP, optimize the activity of metabolic processes by re-oxygenation, and exhibit antimicrobial activity. The purpose of this review is to summarize the pharmacological potential of various germanium-based compounds studied nowadays, taking into account their mechanisms of action, and to analyze their prospects in the development of integrated approaches in the prevention and treatment of SARS-CoV-2 infection.

Keywords

National Library of Medicine, U. S. Department of Health and Human Services, Severe Acute Respiratory Syndrome Coronavirus 2, NCBI:txid2697049; https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=2697049; last access date March 10, 2021Search in Google Scholar

World Health Organisation, Coronavirus Disease 2019 (COVID-19) Situation Report – 40, WHO Geneva, February 2020; https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200229-sitrep-40-covid-19.pdf; last access date March 10, 2021Search in Google Scholar

J. Schulte-Schrepping, N. Reusch, D. Paclik, K. Baßler, S. Schlickeiser, B. Zhang, B. Krämer, T. Krammer, S. Brumhard, L. Bonaguro, E. De Domenico, D. Wendisch, M. Grasshoff, T. S. Kapellos, M. Beckstette, T. Pecht, A. Saglam, O. Dietrich, H. E.Mei, A. R. Schulz, C. Conrad, D. Kunkel, E. Vafadarnejad, C.-J. Xu, A. Horne, M. Herbert, A. Drews, C. Thibeault, M. Pfeiffer, S. Hippenstiel, A. Hocke, H. Müller-Redetzky, K.-M. Heim, F. Machleidt, A. Uhrig, L. B. de Jarcy, L. Jürgens, M. Stegemann, C. R. Glösenkamp, H.-D. Volk, C. Goffinet, M. Landthaler, E. Wyler, P. Georg, M. Schneider, C. Dang-Heine, N. Neuwinger, K. Kappert, R. Tauber, V. Corman, J. Raabe, K. M. Kaiser, M. T. Vinh, G. Rieke, C. Meisel, T. Ulah, M. Becker, R. Geffers, M. Witzenrath, C. Drosten, N. Suttop, C. von Kalle, F. Kurth, K. Händler, J. L. Schultze, A. C. Aschenbrenner, Y. Li, J. Nattermann, B. Sawitzki, A.-E. Saliba and L. E. Sander, Severe COVID-19 is marked by a dysregulated myeloid cell compartment, Cell 182 (2020) 1419–1440; https://doi.org/10.1016/j.cell.2020.08.00110.1016/j.cell.2020.08.001Search in Google Scholar

X. Yang, T. Dai, X. Zhou, H. Qian, R. Guo, L. Lei, X. Zhang, D. Zhang, L. Shi, Y. Cheng, J. Hu, Y. Guo and B. Zhang, Analysis of adaptive immune cell populations and phenotypes in the patients infected by SARSCoV-2, medRxiv preprint; posted December 21, 2020; https://doi.org/10.1101/2020.03.23.2004067510.1101/2020.03.23.20040675Search in Google Scholar

C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang and B. Cao, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet 395 (2020) 497–506; https://doi.org/10.1016/S0140-6736(20)30183-510.1016/S0140-6736(20)30183-5Search in Google Scholar

Z. Xu, L. Shi, Y. Wang, J. Zhang, L. Huang, C. Zhang, S. Liu, P. Zhao, H. Liu, L. Zhu, Y. Tai, C. Bai, T. Gao, J. Song, P. Xia, J. Dong, J. Zhao and F.-S. Wang, Pathological findings of COVID-19 associated with acute respiratory distress syndrome, Lancet Respir Med. 8 (2020) 420–422; https://doi.org/10.1016/S2213-2600(20)30076-X10.1016/S2213-2600(20)30076-XSearch in Google Scholar

G. Pascarela, A. Strumia, C. Piliego, F. Bruno, R. Del Buono, F. Costa, S. Scarlata and F. E. Agro, COVID-19 diagnosis and management: a comprehensive review, J. Intern. Med. 288 (2020) 192–206; https://doi.org/10.1111/joim.1309110.1111/joim.13091726717732348588Search in Google Scholar

I. Thevarajan, T. H. O. Nguyen, M. Koutsakos, J. Druce, L. Caly, C. E. van de Sandt, X. Jia, S. Nicholson, M. Catton, B. Cowie, S. Y. C. Tong, S. R. Lewin and K. Kedzierska, Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19, Nat. Med. 26 (2020) 453–455; https://doi.org/10.1038/s41591-020-0819-210.1038/s41591-020-0819-2709503632284614Search in Google Scholar

M. Zheng, Y. Gao, G., Wang, G. Song, S. Liu, D. Sun, Y. Xu and Z. Tian, Functional exhaustion of antiviral lymphocytes in COVID-19 patients, Cell. Mol. Immunol. 17 (2020) 533–535; https://doi.org/10.1038/s41423-020-0402-210.1038/s41423-020-0402-2709185832203188Search in Google Scholar

S. Dhont, E. Derom, E. Van Braeckel, P. Depuydt and B. N. Lambrecht, The pathophysiology of ‘happy’ hypoxemia in COVID-19, Respir. Res. 21 (2020) Article ID 198; https://doi.org/10.1186/s12931-020-01462-510.1186/s12931-020-01462-5738571732723327Search in Google Scholar

W. Ottestad and S. Søvik, COVID-19 patients with respiratory failure: what can we learn from aviation medicine? Br. J. Anaesth. 125 (2020) 280–281; https://doi.org/10.1016/j.bja.2020.04.01210.1016/j.bja.2020.04.012716528932362340Search in Google Scholar

M. R. Geier and D. A. Geier, Respiratory conditions in coronavirus disease 2019 (COVID-19): Important considerations regarding novel treatment strategies to reduce mortality, Med. Hypotheses 140 (2020) Article ID 109760; https://doi.org/10.1016/j.mehy.2020.10976010.1016/j.mehy.2020.109760717590532344310Search in Google Scholar

L. Delgado-Roche and F. Mesta, Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection, Arch. Med. Res. 51 (2020) 384–387; https://doi.org/10.1016/j.arcmed.2020.04.01910.1016/j.arcmed.2020.04.019719050132402576Search in Google Scholar

N. Komaravelli and A. Casola, Respiratory viral infections and subversion of cellular antioxidant defenses, J. Pharmacogenomics Pharmacoproteomics 5 (2014) Article ID 1000141; https://doi.org/10.4172/2153-0645.100014110.4172/2153-0645.1000141428877425584194Search in Google Scholar

Y. Fu, Y. Cheng and Y. Wu, Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools, Virol. Sin. 35 (2020) 266–271; https://doi.org/10.1007/s12250-020-00207-410.1007/s12250-020-00207-4709047432125642Search in Google Scholar

O. A. Khomich, S. N. Kochetkov, B. Bartosch and A. V. Ivanov, Redox biology of respiratory viral infections, Viruses 10 (2018) Article ID 392; https://doi.org/10.3390/v1008039210.3390/v10080392611577630049972Search in Google Scholar

F. G. De Felice, F. Tovar-Moll, J. Moll, D. P. Munoz and S. T. Ferreira, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the central nervous system, Sci. Soc. 43 (2020) 355–357; https://doi.org/10.1016/j.tins.2020.04.00410.1016/j.tins.2020.04.004717266432359765Search in Google Scholar

D. Giannis, I. A. Ziogas and P. Gianni, Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past, J. Clin. Virol. 127 (2020) Article ID 104362; https://doi.org/10.1016/j.jcv.2020.10436210.1016/j.jcv.2020.104362719527832305883Search in Google Scholar

M. Mititelu, T. I. Stanciu, D. I. Udeanu, D. E. Popa, D. Drăgănescu, C. Cobelschi, N. D. Grigore, A. L. Pop and M. Ghica, The impact of COVID-19 lockdown on the lifestyle and dietary patterns among Romanian population, Farmacia 69 (2021) 1–11; https://doi.org/10.31925/farmacia.2021.1.110.31925/farmacia.2021.1.1Search in Google Scholar

O. G. Olaru, D. C. Badiu, A. D. Stanescu, C. M. Pena, R. I. Papacocea and A. B. Stroescu, Study of available antiviral treatment for COVID-19 during pregnancy, Farmacia 68 (2020) 957–965; https://doi.org/10.31925/farmacia.2020.6.110.31925/farmacia.2020.6.1Search in Google Scholar

A. L. Arsene, I. B. Dumitrescu, C. M. Dragoi, D. I. Udeanu, D. Lupuliasa, V. Jinga, D. Drăgănescu, C. E. Dinu-Pirvu, G. Trian, A. B. Dragomiroiu, I. E. Blejan, R. E. Moisu, A. Crenguta Nicolae, H. Moldovan, D. E. Popa, B. S. Velescu and S. Ruta, A new era for the therapeutic management of the ongoing COVID-19 pandemic, Farmacia 68 (2020) 185–196; https://doi.org/10.31925/farmacia.2020.2.110.31925/farmacia.2020.2.1Search in Google Scholar

National Library of Medicine, National Center for Biotechnology Information, Propagermanium (Compound); https://pubchem.ncbi.nlm.nih.gov/compound/Propagermanium; last access date May 16, 2021Search in Google Scholar

T. Tezuka, A. Higashino, M. Akiba and T. Nakamura, Organogermanium (Ge-132) suppresses activities of stress enzymes responsible for active oxygen species in monkey liver preparation, Adv. Enzyme Res. 5 (2017) 13–23; https://doi.org/10.4236/aer.2017.5200210.4236/aer.2017.52002Search in Google Scholar

T. Nakamura, T. Nagura, M. Akiba, K. Sato, Y. Tokuji, M. Ohnishi and K. Osada, Promotive effects of the dietary organic germanium poly-trans-[(2-carboxyethyl) germasesquioxane] (Ge-132) on the secretion and antioxidative activity of bile in rodents, J. Health Sci. 56 (2010) 72–80; https://doi.org/10.1248/jhs.56.7210.1248/jhs.56.72Search in Google Scholar

Y. Wakabayashi, Effect of germanium-132 on low-density lipoprotein oxidation and atherosclerosis in Kurosawa and Kusanagi hypercholesterolemic rabbits, Biosci. Biotechnol. Biochem. 65 (2001) 1893–1896; https://doi.org/10.1271/bbb.65.189310.1271/bbb.65.189311577738Search in Google Scholar

M. K. Yang and Y. G. Kim, Protective role of germanium-132 against paraquat-induced oxidative stress in the livers of senescence-accelerated mice, J. Toxicol. Environ. Health A 58 (1999) 289–297; https://doi.org/10.1080/00984109915725010.1080/00984109915725010598954Search in Google Scholar

E. Kim, Y. Jeon, D. Y. Kim, E. Lee and S-H. Hyun, Antioxidative effect of carboxyethylgermanium sesquioxide (Ge-132) on IVM of porcine oocytes and subsequent embryonic development after parthenogenetic activation and IVF, Theriogenology 84 (2015) 226–236; https://doi.org/10.1016/j.theriogenology.2015.03.00610.1016/j.theriogenology.2015.03.00625913277Search in Google Scholar

T. Nakamura, T. Takeda and Y. Tokuji, The oral intake of organic germanium, Ge-132, elevates α-tocopherol levels in the plasma and modulates hepatic gene expression profiles to promote immune activation in mice, Int. J. Vitam. Nutr. Res. 84 (2014) 183–195; https://doi.org/10.1024/0300-9831/a00020510.1024/0300-9831/a00020526098482Search in Google Scholar

H. Matsumoto, H. Iwafuji, J. Yamane, R. Takeuchi, T. Utsunomiya and A. Fujii, Restorative effect of organic germanium compound (Ge-132) on dermal injury, Wound Med. 15 (2016) 6–10; https://doi.org/10.1016/j.wndm.2016.09.00110.1016/j.wndm.2016.09.001Search in Google Scholar

B. S. Sekhon, Metalloid compounds as drugs, Res. Pharm. Sci. 8 (2013) 145–158.Search in Google Scholar

C. Hirayama, H. Suzuki, M. Ito, M. Okumura and T. Oda, Propagermanium: a nonspecific immune modulator for chronic hepatitis B, J. Gastroenterol. 38 (2003) 525–532; https://doi.org/10.1007/s00535-003-1098-710.1007/s00535-003-1098-712825127Search in Google Scholar

Y. Shimada, K. Sato, T. Takeda and Y. Tokuji, The organogermanium compound Ge-132 interacts with nucleic acid components and inhibits the catalysis of adenosine substrate by adenosine deaminase, Biol. Trace Elem. Res. 181 (2018) 164–172; https://doi.org/10.1007/s12011-017-1020-410.1007/s12011-017-1020-428429285Search in Google Scholar

T. Takeda, S. Doiyama, J. Azumi, Y. Shimada, Y. Tokuji, H. Yamaguchi, K. Nagata, N. Sakamoto, H. Aso and T. Nakamura, Organogermanium suppresses cell death due to oxidative stress in normal human dermal fibroblasts, Sci. Rep. 9 (2019) Article ID 13637; https://doi.org/10.1038/s41598-019-49883-710.1038/s41598-019-49883-7675440031541125Search in Google Scholar

H. Aso, F. Suzuki, T. Ebina and N. Ishida, Antiviral activity of carboxyethylgermanium sesquioxide (Ge-132) in mice infected with influenza virus, J. Biol. Response Mod. 8 (1989) 180–189.Search in Google Scholar

M. Kuwabara, S. Ohba and M. Yukawa, Effect of germanium, poly-trans-[2-carboxyethyl] germasesquioxane on natural killer (NK) activity in dogs, J. Vet. Med. Sci. 64 (2002) 719–721; https://doi.org/10.1292/jvms.64.71910.1292/jvms.64.71912237519Search in Google Scholar

N. Nagahama, M. Okada and Y. Minamishima, Protective effects of Ge-132 (an organic germanium compounds) on murine cytomegalovirus infection, Chemotherapy 35 (1987) 546–550.Search in Google Scholar

F. Suzuki, R. R. Brutkiewicz and R. B. Pollard, Importance of T-Cells and macrophages in the antitumor activity of carboxyethylgermanium sesquioxide (Ge-132), Anticancer Res. 5 (1985) 479–483.Search in Google Scholar

C. P. Si, X. L. Dang, J. Yu, J. Yang and M. Y. Yi, The enhancement effect of organic germanium (Ge-132) on immune function, Shanghai J. Immunol. 14 (1994) 14–15.Search in Google Scholar

Y. Chen and Y. Shi, Inhibitory effect of Ge-132 on the tumor lesion of marek, disease and its mechanism, Chin. J. Vet. Sci. 14 (1994) 18–22.Search in Google Scholar

O. P. Kolesnikova, M. N. Tuzova, I. V. Safronova, O. T. Kudayeva and V. A. Kozlov, Study of the effect of derivatives of indolyl-3-acetate and germanium-organic compounds on the model of autoimmune glomerulonephritis induced by chronic graft-versus-host reaction, Immunology 3 (1996) 43–46.Search in Google Scholar

A. N. Narovlyanskiy, [Cellular resistance to interferon–in Russian], Nauchnye Doki Vyss Shkoly Biol. Nauki (Moscow) 9 (1991) 5–20.Search in Google Scholar

H. Aso, F. Suzuki, T. Yamaguchi, Y. Hayashi, T. Ebina and N. Ishida, Induction of interferon and activation of NK cells and macrophages in mice by oral administration of Ge-132, an organic germanium compound, Microbiol. Immunol. 29 (1985) 65–74; https://doi.org/10.1111/j.1348-0421.1985.tb00803.x10.1111/j.1348-0421.1985.tb00803.x2581116Search in Google Scholar

T. Munakata, S. Arai, K. Kuwano, M. Furukawa and Y. Tomita, Induction of interferon production by natural killer cells by an organogermanium compounds, Ge 132, J. Interferon Res. 7 (1987) 69–76; https://doi.org/10.1089/jir.1987.7.6910.1089/jir.1987.7.693108417Search in Google Scholar

K. Ikemoto, M. Kobayashi, T. Fukumoto, M. Morimatsu, R. B. Pollard and F. Suzuki, 2-Carboxyethylgermanium sesquioxide, a synthetic organogermanium compound, as an inducer of contrasuppressor T cells, Experientia 52 (1996) 159–166; https://doi.org/10.1007/BF0192336310.1007/BF019233638608818Search in Google Scholar

L. Prónai and S. Arimori, Decreased plasma superoxide scavenging activity in immunological disorders--carboxyethylgermanium sesquioxide (Ge-132) as a promoter of prednisolone, Biotherapy 4 (1992) 1–8; https://doi.org/10.1007/BF0217170310.1007/BF021717031311942Search in Google Scholar

L. Prónai and S. Arimori, Protective effect of carboxyethylgermanium sesquioxide (Ge-132) on superoxide generation by 60Co-irradiated leukocytes, Biotherapy 3 (1991) 273–279; https://doi.org/10.1007/BF0217169210.1007/BF021716921649617Search in Google Scholar

Y. Q. Chen, B. Tian, X. M. Li, Y. J. Chen and S. H. Xie, [Effect of carboxyethylgermanium sesquioxide on cultured normal neonatal rat myocardial cells and cells injured by isoproterenol] Yao Xue Xue Bao (Acta Pharm. Sin.) 27 (1992) 481–485.Search in Google Scholar

E. Ya. Lukevich, T. K. Gar, L. M. Ignatovich and V. F. Mironov, [Biological Activity of Germanium Compounds – in Russian], Zinatne, Riga 1990.Search in Google Scholar

Y. Ishiwata, E. Suzuki, S. Yokochi, T. Otsuka, F. Tasaka, H. Usuda and T. Mitani, Studies on the antiviral activity of propagermanium with immunostimulating action, Arzneimittelforschung 44 (1994) 357–361.Search in Google Scholar

S. H. Tao and P. M. Bolger, Hazard assessment of germanium supplements, Regul. Toxicol. Pharmacol. 25 (1997) 211–219; https://doi.org/10.1006/rtph.1997.109810.1006/rtph.1997.10989237323Search in Google Scholar

R. A. Reddeman, R. Glávits, J. R. Endres, T. S. Murbach, G. Hirka, A. Vértesi, E. Bérez and I. P. Szakonviné, A toxicological evaluation of germanium sesquioxide (organic germanium), J. Toxicol. 2020 (2020) Article ID 6275625; https://doi.org/10.1155/2020/627562510.1155/2020/6275625716073332322266Search in Google Scholar

B. J. Kaplan, G. M. Andrus and W. W. Parish, Germane facts about germanium sesquioxide: II. Scientific error and misrepresentation, J. Altern. Complement. Med. 10 (2004) 345–348; https://doi.org/10.1089/10755530432306233810.1089/10755530432306233815165415Search in Google Scholar

Online-directory of medical products Vidal, Description of the Veterinary Medicinal Product MAXIDIN 0.4; https://www.vidal.ru/veterinar/maxidin-0-4-28423; last access date March 10, 2021Search in Google Scholar

A. V. Sanin, V. V. Annikov, O. N. Narovlyansky, A. V. Pronin and M. V. Mezentseva, [Effect of Maxidin on the general resistance of dogs], Sci. Mess. LNUVMB (Lviv, Ukraine) 19 (2017) 90–93; https://doi.org/10.15421/nvlvet781810.15421/nvlvet7818Search in Google Scholar

H. O. Byts, [Prevention of gastroenteritis in calves with using medications of selenium and germanium], Sci. Mess. LNUVMB (Lviv, Ukraine) 12 (2010) 3–6.Search in Google Scholar

V. V. Veselovskij, I. I. Danilov, S. D. Mal`tsev, A. V. Pronin, A. N. Narovlyanskiy, A. V. Sanin, A. V. Deeva and A. M. Amchenkova Complex of germanium and 2,6-pyridine dicarboxylic acid 1: method of its preparing, pharmaceutical composition, RU Pat. 2171259, 05 Sep 1997.Search in Google Scholar

V. I. Velychko, I. K. Avdosieva, O. M. Shchebentovs`ka, B. I. Kushnir and A. H. Pashchenko, [The perspectives of the application of microelement mixture Hermakap in the sphere of poultry husbandry], Sci. Mess. LNUVMB (Lviv, Ukraine) 17 (2015) 11–16.Search in Google Scholar

M. I. Zhyla, I. K. Avdos’eva, A. H. Pashchenko, L. V. Kalynovska and G. M. Mihalus, [Clinical trials of Germacap therapeutic effectiveness on calves], Sci. Mess. LNUVMB (Lviv, Ukraine) 18 (2016) 42–47.Search in Google Scholar

M. Jung, H.-T. Park, J-H. Park, K.-N. Lee, S. W. Shin, M.-K. Shin, K. Y. Sung, Y. K. Jung, B. Kim and H. S. Yoo, Effects of germanium biotite supplement on immune responses of vaccinated mini-pigs to foot-and-mouth disease virus challenge, Immunol. Invest. 44 (2015) 101–112; https://doi.org/10.3109/08820139.2014.93816410.3109/08820139.2014.93816425058651Search in Google Scholar

M. Jung, M.-K. Shin, S.-B. Cha, S. W. Shin, A. Yoo, W.-J. Lee, H.-T. Park, J.-H. Park, B. Kim, Y.-K. Jung and H. S. Yoo, Supplementation of dietary germanium biotite enhances induction of the immune responses by foot-and-mouth disease vaccine in cattle, BMC Vet Res. 10 (2014) Article ID 179 (10 pages); https://doi.org/10.1186/s12917-014-0179-610.1186/s12917-014-0179-6423682725255918Search in Google Scholar

M. Jung, B.-G. Jung, S. B. Cha, M.-K. Shin, W.-J. Lee, S. W. Shin, J.-A. Lee, Y.-K. Jung, B.-J. Lee and H. S. Yoo, The effects of germanium biotite supplement as a prophylactic agent against respiratory infection in calves, Pak. Vet. J. 32 (2012) 319–324.Search in Google Scholar

N. G. Grushka, S. I. Pavlovych, O. A. Kondratska, N. O. Pilkevcih and R. I. Yanchii, The protective effect of germanium citrate on functional state of immune cells and neutrophil activity under the condition of lipolysaccharide induced inflammation, Fiziol. Zh. 65 (2019) 43–50; https://doi.org/10.15407/fz65.06.04310.15407/fz65.06.043Search in Google Scholar

M. Khrabko, R. Fedoruk and S. Kropivka, [Indicators of the immune and antioxidant systems in the blood of pregnant female rats F1 upon action of different doses of germanium citrate], Bull. Taras Shevchenko Nat. Univ. Kyiv (Kyiv, Ukraine) 22 (2017) 50–53.Search in Google Scholar

O. P. Dolaychuk, R. S. Fedoruk, I. I. Kovalchuk and S. Y. Kropyvka, Physiological and biochemical processes in the organisms of rats that were fed with different amounts of germanium citrate, Biol. Tvarin 17 (2015) 50–56; https://doi.org/10.15407/animbiol17.02.05010.15407/animbiol17.02.050Search in Google Scholar

V. A. Liashenko, N. K. Akhmatova, I. V. Ambrosov, S. K. Matelo, E. A. Akhmatov, A. S. Sukhno and V. G. Khomenkov, [Activation of lymphocytes under the influence of an influenza vaccine combined with a low molecular weight germanium organic compound], Zh. Mikrobiol. Epidemiol. Immunobiol. 6 (2012) 64–68.Search in Google Scholar

V. A. Liashenko, N. K. Akhmatova, I. V. Ambrosov, S. K. Matelo, S. G. Markushin, E. A. Akhmatov, A. S. Sukhno and V. G. Khomenkov, [Activating effect of a germanium-organic compound on immunocompetent cells during intranasal immunization of mice with a live influenza vaccine], Zh. Mikrobiol. Epidemiol. Immunobiol. 3 (2013) 60–68.Search in Google Scholar

O. Yoshinar, Y. Shiojima and K. Igarashi, Hepatoprotective effect of germanium-containing Spirulina in rats with (D)-galactosamine-and lipopolysaccharide-induced hepatitis, Br. J. Nutr. 111 (2014) 135–140; https://doi.org/10.1017/S000711451300194310.1017/S000711451300194323768655Search in Google Scholar

J. M. Cho, J. Chae, S. R. Jeong, M. J. Moon, D. Y. Shin and J. H. Lee, Immune activation of bio-germanium in a randomized, double-blind, placebo-controlled clinical trial with 130 human subjects: Therapeutic opportunities from new insights, PLOS ONE 15 (2020) e0240358; https://doi.org/10.1371/journal.pone.024035810.1371/journal.pone.0240358757207333075061Search in Google Scholar

J.-S. Lee, J.-I. Park, S.-H. Kim, S.-H. Park, S.-K. Kang, C.-B. Park, T.-U. Sohn, J. Y. Jang, J.-K. Kang and Y.-B. Kim, Oral single- and repeated-dose toxicity studies on Geranti Bio-Ge yeast, organic germanium fortified yeasts, in rats, J. Toxicol. Sci. 29 (2004) 541–553; https://doi.org/10.2131/jts.29.54110.2131/jts.29.54115729009Search in Google Scholar

D. H. Baek. W. J. Jin, U. S. Tsang and K. K. Jong, Germanium-fortified yeast activates macrophage, NK cells and B cells and inhibits tumor progression in mice, Kor. J. Microbiol. Biotechnol. 35 (2007) 118–127.Search in Google Scholar

J. H. Lee, K. W. Kim, M. Y. Yoon, J. Y. Lee, C. J. Kim and S. S. Sim, Anti-inflammatory effect of germanium-concentrated yeast against paw oedema is related to the inhibition of arachidonic acid release and prostaglandin E2 production in RBL 2H3 cells, Auton. Autacoid Pharmacol. 25 (2005) 129–134; https://doi.org/10.1111/j.1474-8673.2005.00335.x10.1111/j.1474-8673.2005.00335.x16176443Search in Google Scholar

S. Choi, C. Oh, J. Han, J. Park, J.-H. Choi, N. Y. Min, K.-H. Lee, A. J. Park, Y. J. Kim, S. J. Jang, D.-H. Lee and S. W. Ham, Synthesis and biological evaluation of water-soluble organogermanium, Eur. J. Med. Chem. 45 (2010) 1654–1656; https://doi.org/10.1016/j.ejmech.2009.12.06910.1016/j.ejmech.2009.12.06920106560Search in Google Scholar

L. L. Than, G. Y. Zhang and B. G. Wang, Study on vitro anti-respiratory virus infection effect of organogermanium poly-derivatives, Carcinogenesis Teratogenesis Mutagenesis 16 (2004) 349–351.Search in Google Scholar

S. Yao, J. Jiang, P. Yang and J.-Y. Cai, Synthesis, characterization and antioxidant activity of a novel organogermanium sesquioxide with resveratrol, Bull. Korean Chem. Soc. 33 (2012) 1121–1122; https://doi.org/10.5012/bkcs.2012.33.4.112110.5012/bkcs.2012.33.4.1121Search in Google Scholar

J. Pi, J. Zeng, J.-J. Luo, P.-H. Yang and J.-Y. Cai, Synthesis and biological evaluation of germanium (IV)–polyphenol complexes as potential anti-cancer agents, Bioorg. Med. Chem. Lett. 23 (2013) 2902–2908; https://doi.org/10.1016/j.bmcl.2013.03.06110.1016/j.bmcl.2013.03.06123570787Search in Google Scholar

J. Jiang, S. Yao, H.-H. Cai, P.-H. Yang and J. Cai, Synthesis and synergetic effects of chrysin-organogermanium (IV) complex as potential antioxidant, Bioorg. Med. Chem. Lett. 23 (2013) 5727–5732; https://doi.org/10.1016/j.bmcl.2013.07.07310.1016/j.bmcl.2013.07.07323993775Search in Google Scholar

S. P. Li, W.-L. Xie, H.-H. Cai, J.-Y. Cai and P.-H. Yang, Hydroxyl radical scavenging mechanism of human erythrocytes by quercetin-germanium (IV) complex, Eur. J. Pharm. Sci. 47 (2012) 28–34; https://doi.org/10.1016/j.ejps.2012.04.01910.1016/j.ejps.2012.04.01922579957Search in Google Scholar

C.-W. Oh, M. Li, E.-H. Kim, J.-S. Park, J.-H. Lee and S. W. Ham, Antioxidant and radical scavenging activities of ascorbic acid derivatives conjugated with organogermanium, Bull. Korean Chem. Soc. 31 (2010) 3513–3514; https://doi.org/10.5012/BKCS.2010.31.12.351310.5012/bkcs.2010.31.12.3513Search in Google Scholar

D. H. Lim, M. Li, E.-H. Kim and S. W. Ham, Synthesis of novel organogermanium derivative conjugated with vitamin C and study of its antioxidant effects, Bull. Korean Chem. Soc. 31 (2010) 1839–1840; https://doi.org/10.5012/bkcs.2010.31.7.183910.5012/bkcs.2010.31.7.1839Search in Google Scholar

D. H. Lim, M. Li, J.-A. Seo, K.-M. Lim and S. W. Ham, A novel organogermanium protected atopic dermatitis induced by oxazolone, Bioorg. Med. Chem. Lett. 20 (2010) 4032–434; https://doi.org/10.1016/j.bmcl.2010.05.09710.1016/j.bmcl.2010.05.09720547454Search in Google Scholar

Z. Amtul, C. Follmer, S. Mahboob, A.-Ur-Rahman, M. Mazhar, K. M. Khan, R. A. Siddiqui, S. Muhammad, S. A. Kazmi and M. I. Choudhary, Germa-γ-lactones as novel inhibitors of bacterial urease activity, Biochem. Biophys. Res. Commun. 356 (2007) 457–463; https://doi.org/10.1016/j.bbrc.2007.02.15810.1016/j.bbrc.2007.02.15817367756Search in Google Scholar

A. M. Badawi and A. A. Hafiz, Synthesis and immunomodulatory activity of some novel amino acid germanates, J. Iran. Chem. Soc. 4 (2007) 107–113; https://doi.org/10.1007/BF0324580810.1007/BF03245808Search in Google Scholar

I. V. Nizhenkovskaya, I. I. Seifullina, V. P. Narokha, O. E. Martsinko and E. A. Chebanenko, [Study of antioxidant properties of the complex of germanium with nicotinic acid (MIGU-1) in experimental chronic heart failure], Pharmacol. Drug Toxicol. 2 (2016) 74–79.Search in Google Scholar

I. V. Nizhenkovskaya, V. P. Narokha, O. V. Kuznetsova, T. S. Bryzgina, I. I. Seifullina, E. E. Martsinko and E. A. Chebanenko, [Effects of nicotinic acid and complex of germanium with nicotinic acid (MIGU-1) on lipid fatty acid composition of cardiomyocytes and hepatocytes in rats with experimental chronic heart failure], Pharmacol. Drug Toxicol. 1 (2015) 68–75.Search in Google Scholar

V. Narokha, [The effect of different doses of the coordination compound germanium with nicotinic acid on the processes of lipid peroxidation and the comparative effect of coordination compounds of germanium with different bioligands on the fatty acid spectrum of cardiomyocyte lipids in chronic doxorubicin intoxication], Ukr. Sci. Med. Youth J. 2 (2016) 86–91.Search in Google Scholar

V. Narokha, [The effect of the germanium complex with nicotinic acid on oxidative modification of cardiac and hepatic proteins in the experimental chronic intoxication with doxorubicin in rats], Clin. Pharm. 20 (2016) 35–38.10.24959/cphj.16.1381Search in Google Scholar

I. Nizhenkovska, V. Narokha and O. Kuznetsova, Effects of nicotinic acid on protein oxidative modifications in experimental chronic heart failure, Farmacia 66 (2018) 959–962; https://doi.org/10.31925/FARMACIA.2018.6.510.31925/farmacia.2018.6.5Search in Google Scholar

V. Narokha, I. Nizhenkovska and O. Kuznetsova, Antioxidant effect of nicotinic acid on experimental doxorubicin-induced chronic heart failure, Curr. Top. Pharmacol. 18 (2014) 105–111.Search in Google Scholar

M. Zeman, M. Vecka, F. Perlik, B. Stankova, R. Hromadka, E. Tvrzicka, J. Sirc, J. Hrib and A. Zak, Pleiotropic effects of niacin: Current possibilities for its clinical use, Acta Pharm. 66 (2016) 449–469, https://doi.org/10.1515/acph-2016-004310.1515/acph-2016-004327749252Search in Google Scholar

I. V. Nizhenkovskaya and V. P. Narokha, [Influence of coordination compound of germanium with nicotinic acid on the energy homeostasis of the heart and liver of rats with chronic intoxication with doxorubicin], Recipe 19 (2016) 174–181.Search in Google Scholar

V. D. Lukyanchuk, I. J. Seifullina, N. V. Rysukhina, E. E. Martsinko and V. M. Tkachenko, [Screening and comparative efficiency analysis of detoxicative remedies among organic germanium compounds in crush syndrome], Odeskij Med. Z. (Odessa, Ukraine) 1 (2007) 15–19.Search in Google Scholar

T. R. Luchishin, N. V. Rysukhina and V. D. Lukyanchuk, [Comparative analysis of the effect of MIGU-5 and thiotriazoline on the content of adenyl nucleotides under conditions of endogenous intoxication], Mozhayev Ukr. J. Extr. Med. 13 (2012) 86–90.Search in Google Scholar

V. D. Lukyanchuk, I. I. Seifullina, G. I. Posternak, Ye. A. Shebaldova, N. V. Risukhina and E. E. Martsinko, [Acid-base balance in animals with confined space hypoxia against pharmacological prevention by new germanium coordination compound], Emerg. Med. (Kyiv) 1 (2014) 67–70.10.22141/2224-0586.1.56.2014.83033Search in Google Scholar

I. I. Seifullina, V. D. Lukianchuk and O. D. Nemiatykh, Coordination compound of germanium and nicotinic acid possessing antihypoxic activity, UK Pat. 61375, 17 Nov 2003.Search in Google Scholar

V. Lukyanchuk, D. Kravets and D. Litvinenko, Study of pharmacometric indexes of dosing regimen of antihypoxant OKAGERM-4, Georgian Med. News 11 (2017) 144–147.Search in Google Scholar

M. V. Matyushkina, V. V. Godovan, L. M. Mudryk and T. L. Gridina, Antimicrobial properties of new coordination compounds of metals with citric acid, Odessa Med. J. 4 (2014) 13–17.Search in Google Scholar

I. Seifullina, E. Martsinko, O. Batrakova, N. Borzova, E. Ivanko and L. Varbanets, [Effect of coordinational germanium compounds on enzyme synthesis and activity], Mikrobiol Z. (Kyiv) 64 (2002) 3–11.Search in Google Scholar

National Library of Medicine, National Center for Biotechnology Information, 3-(Trihydroxygermyl) propanoic acid (Compound); https://pubchem.ncbi.nlm.nih.gov/compound/3-_Trihydroxygermyl_propanoic-acid; last access date May 16, 2021Search in Google Scholar

G. Zhai, W. Zhu, Y. Duan, W. Qu and Z. Yan, Synthesis, characterization and antit https://doi.org/10.1515/mgmc-2012-0026 umor activity of the germanium-quercetin complex, Main Group Met. Chem. 35 (2012) 103–109;Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo