Accès libre

Anticancer effects of 7,8-dihydromethysticin in human leukemia cells are mediated via cell-cycle dysregulation, inhibition of cell migration and invasion and targeting JAK/STAT pathway

À propos de cet article

Citez

1. M. S. Tallman, D. G. Gilliland and J. M. Rowe, Drug therapy for acute myeloid leukemia, Blood106 (2005) 1154–1163; https://doi.org/10.1182/blood-2005-01-017810.1182/blood-2005-01-0178Search in Google Scholar

2. E. Estey and H. Dohner, Acute myeloid leukaemia, Lancet368 (2006) 1894–1907; https://doi.org/10.1016/S0140-6736(06)69780-810.1016/S0140-6736(06)69780-8Search in Google Scholar

3. J. Mao, S. Li, H. Zhao, Y. Zhu, M. Hong, H. Zhu, S. Qian and J. Li, Effects of chidamide and its combination with decitabine on proliferation and apoptosis of leukemia cell lines, Am. J. Transl. Res.10 (2018) 2567–2578.Search in Google Scholar

4. E. Jabbour, D. Thomas, J. Cortes, H. M. Kantarjian and S. O’Brien, Central nervous system prophylaxis in adults with acute lymphoblastic leukemia: current and emerging therapies, Cancer116 (2010) 2290–300; https://doi.org/10.1002/cncr.2500810.1002/cncr.2500820209620Search in Google Scholar

5. M. D. Kraszewska, M. Dawidowska, T. Szczepański and M. Witt, T-cell acute lymphoblastic leukaemia: recent molecular biology findings, Br. J. Haematol.156 (2015) 303–15; https://doi.org/10.1111/j.1365-2141.2011.08957.x10.1111/j.1365-2141.2011.08957.x22145858Search in Google Scholar

6. R. Valentin, S. Grabow and M. S. Davids, The rise of apoptosis: Targeting apoptosis in hemato-logic malignancies, Blood132 (2018) 1248–1264; https://doi.org/10.1182/blood-2018-02-79135010.1182/blood-2018-02-79135030012635Search in Google Scholar

7. K. Durinck, S. Goossens, S. Peirs, A. Wallaert, W. Van Loocke, F. Matthijssens, T. Pieters, G. Milani, T. Lammens, P. Rondou and N. Van Roy, Novel biological insights in T-cell acute lymphoblastic leukemia, Exp. Hematol.43 (2015) 625–639; https://doi.org/10.1016/j.exphem.2015.05.01710.1016/j.exphem.2015.05.01726123366Search in Google Scholar

8. S. H. Kang, S. J. Jeong, S. H. Kim, J. H. Kim, J. H. Jung, W. Koh, J. H. Kim, D. K. Kim, C. Y. Chen and S. H. Kim, Icariside II induces apoptosis in U937 acute myeloid leukemia cells: Role of inactivation of STAT3-related signaling, PLOS One7 (2012) e28706; https://doi.org/10.1371/journal.pone.002870610.1371/journal.pone.0028706332088722493659Search in Google Scholar

9. Y. Küley-Bagheri, K. A. Kreuzer, I. Monsef, M. Lübbert and N. Skoetz, Effects of all-trans retinoic acid (ATRA) in addition to chemotherapy for adults with acute myeloid leukaemia (AML) (non-acute promyelocytic leukaemia (non-APL), Cochrane Database of Systematic Reviews8 (2018) Cd011960; https://doi.org/10.1002/14651858.CD011960.pub210.1002/14651858.CD011960.pub2651362830080246Search in Google Scholar

10. L. Mei, E. P. Ontiveros, E. A. Griffiths, J. E. Thompson, E. S. Wang and M. Wetzler, Pharmacogenetics predictive of response and toxicity in acute lymphoblastic leukemia therapy, Blood Rev. 29 (2015) 243–249; https://doi.org/10.1016/j.blre.2015.01.00110.1016/j.blre.2015.01.001449487025614322Search in Google Scholar

11. S. Samala and C. Veerasham, Ehanced bioavalibity of glimepiride in the presence of boswellic acids in streptozotocin-induced diabetic rat model, Nat. Prod. Chem. Res. 1 (2013) 116.Search in Google Scholar

12. S. G. D. Oliveira, E. Piva and R. G, Lund The PO possibility of Interactions between medicinal herbs and allopathic medicines used by patients attended at basic care units of the Brazilian unified health system, Nat. Prod. Chem. Res.3 (2015) 171; http://dx.doi.org/10.4172/2329-6836.100017110.4172/2329-6836.1000171Search in Google Scholar

13. G. M. Cragg and D. J. Newman, Biodiversity: A continuing source of novel drug leads, Pure Appl. Chem. 77 (2005) 7–24.Search in Google Scholar

14. C. Kim and B. Kim, Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A Review, Nutrients10 (2018) 1021; https://doi.org/10.3390/nu1008102110.3390/nu10081021Search in Google Scholar

15. R. A. Maplestone, M. J. Stone and D. H. Williams, The evolutionary role of secondary metabolites-A review, Gene115 (1992) 151–157; https://doi.org/10.1016/0378-1119(92)90553-210.1016/0378-1119(92)90553-2Search in Google Scholar

16. S. Russmann, B. H. Lauterburg, Y. Barguil, E. Choblet, P. Cabalion, K. Rentsch and M. Wenk, Traditional aqueous kava extracts inhibit cytochrome P450 1A2 in humans: protective effect against environmental carcinogens, Clin. Pharmacol. Ther.77 (2005) 453–454; https://doi.org/10.1016/j.clpt.2005.01.02110.1016/j.clpt.2005.01.021Search in Google Scholar

17. Y. Ma, K. Sachdeva, J. Liu, M. Ford, D. Yang, I. A. Khan, C. O. Chichester and B. Yan, Desmethoxyyangonin and dihydromethysticin are two major pharmacological kavalactones with marked activity on the induction of CYP3A23, Drug. Metab. Dispos.32 (2004) 1317–1324; https://doi.org/10.1124/dmd.104.00078610.1124/dmd.104.000786Search in Google Scholar

18. J. Walden, J. von Wegerer, U. Winter, M. Berger and H. Grunze H, Effects of kawain and dihydromethysticin on field potential changes in the hippocampus, Prog. Neuro-Psychopharmacol. Biol. Psychiatry21 (1997) 697–706.10.1016/S0278-5846(97)00042-0Search in Google Scholar

19. J. Sarris, E. Laporte and I. Schweitzer, Kava: A comprehensive review of efficacy, safety, and psycho-pharmacology, Aust. N. Z. J. Psychiatry45 (2011) 27–35; https://doi.org/10.3109%2F00048674.2010.522554Search in Google Scholar

20. Y. N. Singh and N. N. Singh, Therapeutic potential of kava in the treatment of anxiety disorders, Mol. Diag. Ther.16 (2002) 731–743; https://doi.org/10.2165/00023210-200216110-0000210.2165/00023210-200216110-0000212383029Search in Google Scholar

21. J. Q. Dai, Y. G Huang and A. N. He, Dihydromethysticin kavalactone induces apoptosis in osteosarcoma cells through modulation of PI3K/Akt pathway, disruption of mitochondrial membrane potential and inducing cell cycle arrest, Int. J. Clin. Exp. Pathol.8 (2015) 4356–4366.Search in Google Scholar

22. H. Pan, F. Liu, J. Wang, et al. Dihydromethysticin, a natural molecule from Kava, suppresses the growth of colorectal cancer via the NLRC3/PI3K pathway, Mol. Carcinog. 59 (2020) 575–589; https://doi.org/10.1002/mc.2318210.1002/mc.2318232187756Search in Google Scholar

23. M. D. Megonigal, E. F. Rappaport, D. H. Jones, C. S. Kim, P. C. Nowell, B. J. Lange and C. A. Felix, Panhandle PCR strategy to amplify MLL genomic breakpoints in treatment-related leukemias, Proc. Natl. Acad. Sci.94 (1997) 11583–11588; https://doi.org/10.1073/pnas.94.21.1158310.1073/pnas.94.21.11583235469326653Search in Google Scholar

24. A. S. Sreedhar and P. Csermely, Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review, Pharmacol. Ther.101 (2004) 227–257; https://doi.org/10.1016/j.pharmthera.2003.11.00410.1016/j.pharmthera.2003.11.00415031001Search in Google Scholar

25. K. Zhang, A. N. Ezemaduka, Z. Wang, H. Hu, X. Shi, C. Liu, X. Lu, X. Fu, Z. Chang and C. C. Yin, A novel mechanism for small heat shock proteins to function as molecular chaperones, Sci. Rep.5 (2015) 8811; https://doi.org/10.1038/srep0881110.1038/srep08811435154925744691Search in Google Scholar

26. W. Tang and G. Zhao, Small molecules targeting HIF-1α pathway for cancer therapy in recent years, Bioorg. Med. Chem.332 (2013) 275–285; https://doi.org/10.1016/j.bmc.2019.11523510.1016/j.bmc.2019.11523531843464Search in Google Scholar

27. A.O. Oyewole, M. C. Wilmot, M. Fowler and M. A. Birch-Machin, Comparing the effects of mitochondrial targeted and localized antioxidants with cellular antioxidants in human skin cells exposed to UVA and hydrogen peroxide, FASEB J.28 (2014) 485–494; https://doi.org/10.1096/fj.13-23700810.1096/fj.13-23700824115050Search in Google Scholar

28. F. Wang, X. Ye, D. Zhai, W. Dai, Y. Wu, J. Chen and W. Chen, Curcumin-loaded nanostructured lipid carrier induced apoptosis in human HepG2 cells through activation of the DR5/caspase-mediated extrinsic apoptosis pathway, Acta Pharm. 70 (2020) 227–237; https://doi.org/10.2478/acph-2020-000310.2478/acph-2020-000331955141Search in Google Scholar

29. F. Seif, M. Khoshmirsafa, H. Aazami, M. Mohsenzadegan, G. Sedighi and M. Bahar, The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells, Cell Commun. Signal.15 (2017) 23; https://doi.org/10.1186/s12964-017-0177-y10.1186/s12964-017-0177-y548018928637459Search in Google Scholar

eISSN:
1846-9558
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Pharmacy, other