Accès libre

Self-microemulsifying drug delivery systems of Moringa oleifera extract for enhanced dissolution of kaempferol and quercetin

À propos de cet article

Citez

1. Y. Liu, X. Y. Wang, X. M. Wei, Z. T. Gao and J. P. Han, Values, properties and utility of different parts of Moringa oleifera : An overview, CHM. 10 (2018) 371–378. https://doi.org/10.1016/j.chmed.2018.09.002 Search in Google Scholar

2. N. Qi, Gong. X, C. Feng, X. Wang, Y. Xu and L. Lin, Simultaneous analysis of eight vitamin E isomers in Moringa oleifera Lam. leaves by ultra performance convergence chromatography, Food Chem. 207 (2016) 157–161; https://doi.org/10.1016/j.foodchem.2016.03.089 Search in Google Scholar

3. B. Moyo, S. Oyedemi, P. J. Masika and V. Muchenje, Polyphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activity of liver from goats supplemented with Moringa oleifera leaves/sunflower seed cake, Meat Sci. 91 (2012) 441–447; https://doi.org/10.1016/j.meatsci.2012.02.029 Search in Google Scholar

4. D. Jaiswal, P. K. Rai, A. Kumar, S. Mehta and G. Watal, Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats, J. Ethnopharmacol. 123 (2009) 392–396; https://doi.org/10.1016/j.jep.2009.03.036 Search in Google Scholar

5. P. Chumark, P. Khunawat, Y. Sanvarinda, S. Phornchirasilp, N. P. Morales, L. Phivthong-ngam, P. Ratanachamnong, S. Srisawat and K. S. Pongrapeeporn, The in vitro and ex vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of Moringa oleifera Lam. Leaves, J. Ethnopharmacol. 116 (2008) 439–446; https://doi.org/10.1016/j.jep.2007.12.010 Search in Google Scholar

6. S. Charoensin, Antioxidant and anticancer activities of Moringa oleifera leaves, J. Med. Plants Res. 8 (2014) 318–325; https://doi.org/10.5897/JMPR2013.5353 Search in Google Scholar

7. L. L. Jung, Soluble extract from Moringa oleifera leaves with a new anticancer activity, Plos One 9 (2014) e95492; https://doi.org/10.1371/journal.pone.0095492 Search in Google Scholar

8. S. Sreelatha, A. Jeyachitra and P. R. Padma, Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells, Food Chem. Toxicol. 49 (2011) 1270–1275; https://doi.org/10.1016/j.fct.2011.03.006 Search in Google Scholar

9. PubChem Identifier: CID 5280863; https://pubchem.ncbi.nlm.nih.gov/compound/5280863; access date February 26, 2019. Search in Google Scholar

10. A. Barve, C. Chen, V. Hebbar, J. Desiderio, C. L. L. Saw and A. N. Kong, Metabolism, oral bioavail-ability and pharmacokinetics of chemopreventive kaempferol in rats, Biopharm. Drug Dispos. 30 (2009) 356–365; https://doi.org/10.1002/bdd.677 Search in Google Scholar

11. L. Gao, G. Liu, X. Wang, F. Liu, Y. Xu and J. Ma, Preparation of a chemically stable quercetin formulation using nanosuspension technology, Int. J. Pharm. 404 (2011) 231–237; https://doi.org/10.1016/j.ijpharm.2010.11.009 Search in Google Scholar

12. K. A. Khaled, Y. M. El-Sayed and B. M. Al-Hadiya, Disposition of the flavonoid quercetin in rats after single intravenous and oral doses, Drug Dev. Ind. Pharm. 29 (2003) 397–403; https://doi.org/10.1081/DDC-120018375 Search in Google Scholar

13. R. Gugler, M. Leschik and H. J. Dengler, Disposition of quercetin in man after single oral and intravenous doses, Eur. J. Clin. Pharmacol. 9 (1975) 229–234. Search in Google Scholar

14. K. Zhang, L. Gu, J. Chen, Y. Zhang, Y. Jiang, L. Zhao, K. Bi and X. Chen, Preparation and evaluation of kaempferol-phospholipid complex for pharmacokinetics and bioavailability in SD rats, J. Pharm. Biomed. Anal. 114 (2015) 168–175; https://doi.org/10.1016/j.jpba.2015.05.017 Search in Google Scholar

15. K. Zhang, M. Zhang, Z. Liu, Y. Zhang, L. Gu, G. Hu, X. Chen and J. Jia, Development of quercetinphospholipid complex to improve the bioavailability and protection effects against carbon tetrachloride-induced hepatotoxicity in SD rats, Fitoterapia 113 (2016) 102–109; https://doi.org10.1016/j.fitote.2016.07.008 Search in Google Scholar

16. R. Pangeni, S. W. Kang, M. Oak, E. Y. Park and J. W. Park, Oral delivery of quercetin in oil-in-water nanoemulsion: In vitro characterization and in vivo anti-obesity efficacy in mice, J. Funct. Foods 38 (2017) 571–581; https://doi.org/10.1016/j.jff.2017.09.059 Search in Google Scholar

17. K. AboulFotouh, A. A. Allam, M. El-Badry and A. M. El-Sayed, Role of self-emulsifying drug delivery systems in optimizing the oral delivery of hydrophilic macromolecules and reducing interindividual variability, Colloids Surf. B Biointerfaces 167 (2018) 82–92; https://doi.org/10.1016/j.colsurfb.2018.03.034 Search in Google Scholar

18. R. N. Gursoy and S. Benita, Self-emulsifying drug delivery systems (SEDDS) for improved oral bioavailability of lipophilic drugs, Biomed. Pharmacother. 58 (2004) 173–182; https://doi.org/10.1016/j.biopha.2004.02.001 Search in Google Scholar

19. S. Setthacheewakul, S. Mahattanadul, N. Phadoongsombut, W. Pichayakorn and R. Wiwattanapatapee, Development and evaluation of self-microemulsifying liquid and pellet formulations of curcumin, and absorption studies in rats, Eur. J. Pharm. Biopharm. 76 (2010) 475–485; https://doi.org/10.1016/j.ejpb.2010.07.011 Search in Google Scholar

20. A. K. Nayak and P. P. Panigrahi, Solubility enhancement of etoricoxib by cosolvency approach, ISRN. 2012 (2012) 1–5, http://dx.doi.org/10.5402/2012/820653 Search in Google Scholar

21. M. M. Bandivadeka, S. S. Pancholi, R. Kaul-Ghanekar, A. Choudhari and S. Koppikar, Self-micro-emulsifying smaller molecular volume oil (Capmul MCM) using non-ionic surfactants: a delivery system for poorly water-soluble drug, Drug Dev. Ind. Pharm. 38 (2012) 883–892, https://doi.org/10.3109/03639045.2011.631548 Search in Google Scholar

22. M. A. Abd Sisak, R. Daik and S. Ramli, Study on the effect of oil phase and co-surfactant on microemulsion systems, MJAS 21 (2017) 1409–1416; https://doi.org/10.17576/mjas-2017-2106-23 Search in Google Scholar

eISSN:
1846-9558
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Pharmacy, other