Advanced Ai Tools for Predicting Mechanical Properties of Self-Compacting Concrete
10 janv. 2025
À propos de cet article
Publié en ligne: 10 janv. 2025
Pages: 69 - 86
Reçu: 25 oct. 2023
Accepté: 25 janv. 2024
DOI: https://doi.org/10.2478/acee-2024-0014
Mots clés
© 2024 Achal AGRAWAL et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1.
![ANFIS network designed for the SCC strength modeling [28]](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6780fa99082aa65dea3c7504/j_acee-2024-0014_fig_001.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250906%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250906T054545Z&X-Amz-Expires=3600&X-Amz-Signature=532f80c1ab29e20a1a16739773b6669c63ad7bc0a627d6674b8afbcdf8562b8d&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 2.
![Hyperplanes of SVR [30]](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6780fa99082aa65dea3c7504/j_acee-2024-0014_fig_002.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250906%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250906T054545Z&X-Amz-Expires=3600&X-Amz-Signature=458cbbf5a8194af94cca52cade05e8f0a7f6c2e1e141311a3c5854d5ef002928&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 3.
![ANN architecture [23]](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6780fa99082aa65dea3c7504/j_acee-2024-0014_fig_003.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250906%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250906T054545Z&X-Amz-Expires=3600&X-Amz-Signature=a3c45412277918c72564dbbb2ab40df8c290cbbea00bd5f66a3b710cdc7b2c6b&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

SVM parameters used in the present study [20]
SVM Parameter | Adoption/Values |
---|---|
Kernel function | RBF |
Scaling factor | 1 |
Method | Quadratic programming |
Support Vectors | 13x5 |
Bias | -0.012 |
Correlation matrix for TS28
Variables | SP | PC | PPF | SF | SFD | SFT | VF | TS28 |
---|---|---|---|---|---|---|---|---|
SP | 1.00 | 0.14 | 0.00 | 0.00 | 0.42 | −0.36 | −0.32 | 0.71 |
PC | 0.14 | 1.00 | 0.02 | 0.02 | 0.36 | −0.36 | −0.44 | 0.69 |
PPF | 0.00 | 0.02 | 1.00 | −0.01 | −0.67 | 0.70 | 0.66 | 0.21 |
SF | 0.00 | 0.02 | −0.01 | 1.00 | −0.30 | 0.23 | 0.31 | 0.29 |
SFD | 0.42 | 0.36 | −0.67 | −0.30 | 1.00 | −0.98 | −0.96 | 0.26 |
SFT | −0.36 | −0.36 | 0.70 | 0.23 | −0.98 | 1.00 | 0.97 | −0.23 |
VF | −0.32 | −0.44 | 0.66 | 0.31 | −0.96 | 0.97 | 1.00 | −0.25 |
TS28 | 0.71 | 0.69 | 0.21 | 0.29 | 0.26 | −0.23 | −0.25 | 1.00 |
Performance Matrix for CS28
Models | Index of Agreement (IOA) | Akaike Information Criterion (AIC) | Skill Score (SS) | Symmetric Uncertainty (SU) |
---|---|---|---|---|
ANFIS | 0.50 | 256.34 | 0.50 | 0.01 |
ANN | 0.64 | 232.34 | 0.64 | 0.29 |
SVM | 0.96 | 68.33 | 0.96 | 0.93 |
MLR | 0.51 | 256.04 | 0.51 | 0.01 |
GEP | 0.62 | 159.31 | 0.58 | 0.73 |
Performance Matrix for TS28
Models | Index of Agreement (IOA) | Akaike Information Criterion (AIC) | Skill Score (SS) | Symmetric Uncertainty (SU) |
---|---|---|---|---|
ANFIS | 0.67 | −59.96 | 0.67 | 0.33 |
ANN | −0.54 | 50.01 | −0.54 | −2.07 |
SVM | 0.81 | −99.25 | 0.81 | 0.61 |
MLR | 0.87 | −127.64 | 0.87 | 0.74 |
GEP | 0.62 | −51.32 | 0.62 | 0.25 |
Correlation matrix for CS28
VARIABLES | SP | PC | PPF | SF | SFD | SFT | VF | CS28 |
---|---|---|---|---|---|---|---|---|
SP | 1.00 | 0.14 | 0.00 | 0.00 | 0.42 | −0.36 | −0.32 | 0.68 |
PC | 0.14 | 1.00 | 0.02 | 0.02 | 0.36 | −0.36 | −0.44 | 0.72 |
PPF | 0.00 | 0.02 | 1.00 | −0.01 | −0.67 | 0.70 | 0.66 | 0.16 |
SF | 0.00 | 0.02 | −0.01 | 1.00 | −0.30 | 0.23 | 0.31 | 0.32 |
SFD | 0.42 | 0.36 | −0.67 | −0.30 | 1.00 | −0.98 | −0.96 | 0.28 |
SFT | −0.36 | −0.36 | 0.70 | 0.23 | −0.98 | 1.00 | 0.97 | −0.25 |
VF | −0.32 | −0.44 | 0.66 | 0.31 | −0.96 | 0.97 | 1.00 | −0.26 |
CS28 | 0.68 | 0.72 | 0.16 | 0.32 | 0.28 | −0.25 | −0.26 | 1.00 |
Initial values of ANFIS GA parameters [28]
Parameters | Values |
---|---|
Population size | 20 |
Iterations | 1000 |
Crossover rate | 0.70 |
Mutation rate | 0.50 |
Inversion rate | 0.10 |
Selection pressure | 8.0 |
Gamma | 0.20 |
Dataset for training and testing of different models
SP (kg) | PC (kg) | PPF (kg) | SF (kg) | SFD (Dia) | SFT (Sec) | VF (Sec) | CS28 (MPa) | TS28 (MPa) | Water (kg) | FA (kg) | CA1 20-10 mm (kg) | CA2 10-4.75 mm (kg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
9 | 600 | 0 | 0 | 780 | 2 | 7 | 36.11 | 4.41 | 240 | 810 | 365 | 365 |
9 | 600 | 1.5 | 3 | 665 | 5 | 13 | 39.95 | 4.79 | 240 | 810 | 365 | 365 |
9 | 600 | 3 | 6 | 630 | 6 | 14 | 41.1 | 5.26 | 240 | 810 | 365 | 365 |
9.225 | 615 | 0 | 0 | 790 | 1.5 | 6 | 39.55 | 4.67 | 246 | 810 | 365 | 365 |
9.225 | 615 | 1.535 | 3.07 | 730 | 3 | 9 | 42.33 | 5.66 | 246 | 810 | 365 | 365 |
9.225 | 615 | 3.07 | 6.15 | 690 | 4 | 11 | 46.31 | 6.12 | 246 | 810 | 365 | 365 |
9.45 | 630 | 0 | 3.15 | 750 | 2.5 | 8 | 45.52 | 6.03 | 252 | 810 | 365 | 365 |
9.45 | 630 | 1.575 | 6.3 | 730 | 3 | 8 | 49.16 | 6.88 | 252 | 810 | 365 | 365 |
9.45 | 630 | 3.15 | 0 | 725 | 3 | 9 | 46.46 | 6.28 | 252 | 810 | 365 | 365 |
12 | 600 | 0 | 6 | 760 | 2 | 8 | 44.12 | 5.86 | 240 | 810 | 365 | 365 |
12 | 600 | 1.5 | 0 | 765 | 2 | 7 | 41.68 | 5.53 | 240 | 810 | 365 | 365 |
12 | 600 | 3 | 3 | 710 | 4 | 12 | 45.09 | 6.22 | 240 | 810 | 365 | 365 |
12.3 | 615 | 0 | 3.07 | 775 | 2 | 7 | 48.03 | 6.74 | 246 | 810 | 365 | 365 |
12.3 | 615 | 1.535 | 6.15 | 725 | 3 | 9 | 53.11 | 7.26 | 246 | 810 | 365 | 365 |
12.3 | 615 | 3.07 | 0 | 710 | 4 | 10 | 47.36 | 6.67 | 246 | 810 | 365 | 365 |
12.6 | 630 | 0 | 6.3 | 810 | 1 | 6 | 57.16 | 7.8 | 252 | 810 | 365 | 365 |
12.6 | 630 | 1.575 | 0 | 785 | 2 | 6 | 54.3 | 7.52 | 252 | 810 | 365 | 365 |
12.6 | 630 | 3.15 | 3.15 | 750 | 3 | 9 | 56.44 | 7.76 | 252 | 810 | 365 | 365 |
3.3 | 565 | 0 | 0 | 690 | 2 | 11 | 52.8 | 3.9 | 186 | 750 | 58.5 | 391.5 |
5 | 566.7 | 0 | 0 | 680 | 2.2 | 16 | 57.3 | 4 | 170 | 760 | 58.5 | 391.5 |
5.1 | 566.7 | 0 | 39 | 665 | 2.8 | 18 | 56.9 | 5.9 | 170 | 760 | 58.5 | 391.5 |
5.3 | 566.7 | 4.55 | 39 | 670 | 3.1 | 19 | 61.7 | 6.9 | 170 | 760 | 58.5 | 391.5 |
5.7 | 566.7 | 6.825 | 39 | 660 | 3.3 | 18 | 58.8 | 7.2 | 170 | 760 | 58.5 | 391.5 |
6.2 | 566.7 | 9.1 | 39 | 645 | 4.2 | 20 | 56.7 | 6.9 | 170 | 760 | 58.5 | 391.5 |
10 | 500 | 0 | 0 | 700 | 2.4 | 7 | 37.21 | 4.25 | 190 | 1005 | 310 | 310 |
10 | 500 | 0 | 157 | 600 | 4 | 12 | 51.31 | 7.2 | 190 | 1005 | 310 | 310 |
10 | 500 | 0 | 117.75 | 620 | 3.8 | 11 | 50.24 | 6.25 | 190 | 1005 | 310 | 310 |
10 | 500 | 0 | 78.5 | 640 | 3.5 | 10.5 | 50.45 | 6.1 | 190 | 1005 | 310 | 310 |
10 | 500 | 0 | 39.25 | 650 | 3.5 | 10.5 | 45.64 | 4.8 | 190 | 1005 | 310 | 310 |
10 | 500 | 0 | 0 | 670 | 3 | 8.3 | 34.87 | 4.1 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.455 | 157 | 580 | 5 | 12.7 | 40.52 | 5.8 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.455 | 117.75 | 600 | 4 | 12 | 45.78 | 5.8 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.455 | 78.5 | 620 | 3.5 | 11 | 50.44 | 6.25 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.455 | 39.25 | 630 | 3.5 | 10.6 | 47.86 | 5.85 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.455 | 0 | 640 | 3.2 | 10.5 | 47.84 | 5.75 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.91 | 157 | 560 | 5.5 | 13 | 64.1 | 7.25 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.91 | 117.75 | 570 | 5.5 | 12.5 | 54.98 | 6.15 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.91 | 78.5 | 590 | 5 | 11.5 | 47.64 | 5.7 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.91 | 39.25 | 610 | 4.5 | 11 | 46.09 | 5.75 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.91 | 0 | 620 | 4 | 11 | 43.96 | 3.8 | 190 | 1005 | 310 | 310 |
10 | 500 | 0 | 0 | 720 | 2.2 | 6.8 | 39.04 | 4.3 | 190 | 1005 | 310 | 310 |
10 | 500 | 0 | 157 | 620 | 4 | 11.6 | 66.69 | 7.95 | 190 | 1005 | 310 | 310 |
10 | 500 | 0 | 117.75 | 630 | 4 | 11 | 53.91 | 6.5 | 190 | 1005 | 310 | 310 |
10 | 500 | 0 | 78.5 | 640 | 3.5 | 10.5 | 52.31 | 6.5 | 190 | 1005 | 310 | 310 |
10 | 500 | 0 | 39.25 | 660 | 3.5 | 10.5 | 47.96 | 5.7 | 190 | 1005 | 310 | 310 |
10 | 500 | 0 | 0 | 680 | 2.5 | 8.1 | 39.53 | 4.6 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.455 | 157 | 600 | 4.5 | 12.5 | 52.27 | 6.45 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.455 | 117.75 | 620 | 4 | 12 | 62.67 | 7.35 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.455 | 78.5 | 630 | 4 | 11 | 56.92 | 6.5 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.455 | 39.25 | 640 | 3.5 | 10.4 | 55.13 | 6.45 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.455 | 0 | 650 | 3.5 | 10.2 | 53.21 | 6.2 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.91 | 157 | 580 | 5.5 | 12.5 | 69.12 | 8.1 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.91 | 117.75 | 590 | 5.5 | 12 | 55.68 | 6.8 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.91 | 78.5 | 600 | 5 | 11.8 | 50.05 | 6.4 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.91 | 39.25 | 620 | 4 | 11 | 46.5 | 5.9 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.91 | 0 | 630 | 4 | 10.6 | 46.05 | 4.4 | 190 | 1005 | 310 | 310 |
10 | 500 | 0 | 0 | 740 | 2 | 6.8 | 42.83 | 4.95 | 190 | 1005 | 310 | 310 |
10 | 500 | 0 | 157 | 630 | 4 | 11.6 | 68.14 | 8.05 | 190 | 1005 | 310 | 310 |
10 | 500 | 0 | 117.75 | 630 | 4 | 11 | 64.79 | 7.5 | 190 | 1005 | 310 | 310 |
10 | 500 | 0 | 78.5 | 650 | 3.2 | 10.5 | 56.55 | 6.65 | 190 | 1005 | 310 | 310 |
10 | 500 | 0 | 39.25 | 660 | 3 | 10.5 | 49.82 | 5.9 | 190 | 1005 | 310 | 310 |
10 | 500 | 0 | 0 | 700 | 2.5 | 8.1 | 46.72 | 4.75 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.455 | 157 | 620 | 4.5 | 12.5 | 60.22 | 7 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.455 | 117.75 | 630 | 4 | 12 | 69.71 | 8.15 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.455 | 78.5 | 640 | 4 | 11 | 64.52 | 7.4 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.455 | 39.25 | 650 | 3.5 | 10.4 | 56.7 | 6.6 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.455 | 0 | 670 | 3 | 10.2 | 53.73 | 6.55 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.91 | 157 | 600 | 5 | 12.5 | 69.79 | 8.15 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.91 | 117.75 | 610 | 5 | 12 | 56.67 | 7.75 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.91 | 78.5 | 620 | 4.5 | 11.8 | 52.48 | 6.8 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.91 | 39.25 | 640 | 3.5 | 11 | 49.6 | 6.15 | 190 | 1005 | 310 | 310 |
10 | 500 | 0.91 | 0 | 650 | 3.5 | 10.6 | 49.4 | 5 | 190 | 1005 | 310 | 310 |
GEP parameters [27]
Parameters | Values |
---|---|
Population size | 30 |
Genes per chromosome | 3 |
Gene head length | 9 |
Functions | +, -./, *,^ |
Gene tail length | 12 |
Mutation rate | 0.05 |
Inversion rate | 0.1 |
Gene transposition rate | 0.1 |
One-point recombination rate | 0.3 |
Two-point recombination rate | 0.3 |
Gene recombination rate | 0.1 |
Fitness function | R≥0.7 |