À propos de cet article

Citez

1. Monniaux D, Cadoret V, Clément F, Dalbies-Tran R, Elis S, Fabre S, Maillard V, Monget P, Uzbekova S. Folliculogenesis. Encycl Endocr Dis. 2019;377–98; DOI:10.1016/B978-0-12-801238-3.64550-6.10.1016/B978-0-12-801238-3.64550-6 Search in Google Scholar

2. Adashi EY, Serono Symposia U, International Symposium on Ovulation (1998 : Salt Lake City U. Ovulation : evolving scientific and clinical concepts 2000;335.10.1007/978-0-387-21508-2 Search in Google Scholar

3. Baker TG. A quantitative and cytological study of germ cells in human ovaries. Proc R Soc London Ser B, Biol Sci. 1963;158:417–33; DOI:10.1098/RSPB.1963.0055.10.1098/rspb.1963.005514070052 Search in Google Scholar

4. Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996;17(2):121–55; DOI:10.1210/EDRV-17-2-121.10.1210/edrv-17-2-1218706629 Search in Google Scholar

5. Findlay JK, Kerr JB, Britt K, Liew SH, Simpson ER, Rosairo D, Drummond A. Ovarian physiology: follicle development, oocyte and hormone relationships. Anim Reprod, V. n.d.;6(1):16–9. Search in Google Scholar

6. McGee EA, Hsueh AJW. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21(2):200–14; DOI:10.1210/EDRV.21.2.0394.10.1210/edrv.21.2.039410782364 Search in Google Scholar

7. Da Silva-Buttkus P, Jayasooriya GS, Mora JM, Mobberley M, Ryder TA, Baithun M, Stark J, Franks S, Hardy K. Effect of cell shape and packing density on granulosa cell proliferation and formation of multiple layers during early follicle development in the ovary. J Cell Sci. 2008;121(Pt 23):3890–900; DOI:10.1242/JCS.036400.10.1242/jcs.03640019001500 Search in Google Scholar

8. Findlay JK. Folliculogenesis. Encycl Horm. 2003;653–6; DOI:10.1016/B0-12-341103-3/00141-8.10.1016/B0-12-341103-3/00141-8 Search in Google Scholar

9. Rimon-Dahari N, Yerushalmi-Heinemann L, Alyagor L, Dekel N. Ovarian Folliculogenesis. Results Probl Cell Differ. 2016;58:167–90; DOI:10.1007/978-3-319-31973-5_7.10.1007/978-3-319-31973-5_727300179 Search in Google Scholar

10. Vidal JD, Dixon D. Ovary. Boorman’s Pathol Rat. 2018;523–36; DOI:10.1016/B978-0-12-391448-4.00026-5.10.1016/B978-0-12-391448-4.00026-5 Search in Google Scholar

11. Griffin J, Emery BR, Huang I, Peterson CM, Carrell DT. Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human). J Exp Clin Assist Reprod. 2006;3:2; DOI:10.1186/1743-1050-3-2.10.1186/1743-1050-3-2141354816509981 Search in Google Scholar

12. Kossowska-Tomaszczuk K, De Geyter C. Cells with stem cell characteristics in somatic compartments of the ovary. Biomed Res Int. 2013;2013; DOI:10.1155/2013/310859.10.1155/2013/310859359121723484108 Search in Google Scholar

13. Uyar A, Torrealday S, Seli E. Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil Steril. 2013;99(4):979–97; DOI:10.1016/J.FERTNSTERT.2013.01.129.10.1016/j.fertnstert.2013.01.129386613123498999 Search in Google Scholar

14. Rodgers RJ, Irving-Rodgers HF. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod. 2010;82(6):1021–9; DOI:10.1095/BIOLREPROD.109.082941.10.1095/biolreprod.109.08294120164441 Search in Google Scholar

15. Young JM, McNeilly AS. Theca: the forgotten cell of the ovarian follicle. Reproduction. 2010;140(4):489–504; DOI:10.1530/REP-10-0094.10.1530/REP-10-009420628033 Search in Google Scholar

16. Pan B, Li J. The art of oocyte meiotic arrest regulation. Reprod Biol Endocrinol 2019 171. 2019;17(1):1–12; DOI:10.1186/S12958-018-0445-8.10.1186/s12958-018-0445-8632060630611263 Search in Google Scholar

17. Cooper GM. The cell: a molecular approach. 2nd ed. Sinauer: Sunder-land; 2000. 625 p. Search in Google Scholar

18. Dzafic E, Stimpfel M, Virant-Klun I. Plasticity of granulosa cells: on the crossroad of stemness and transdifferentiation potential. J Assist Re-prod Genet. 2013;30(10):1255–61; DOI:10.1007/s10815-013-0068-0.10.1007/s10815-013-0068-0382486223893266 Search in Google Scholar

19. Kossowska-Tomaszczuk K, De Geyter C, De Geyter M, Martin I, Holzgreve W, Scherberich A, Zhang H. The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells. 2009;27(1):210–9; DOI:10.1634/STEMCELLS.2008-0233.10.1634/stemcells.2008-023319224509 Search in Google Scholar

20. Stefańska K, Sibiak R, Hutchings G, Dompe C, Moncrieff L, Janowicz K, Jeseta M, Kempisty B, Machatkova M, Mozdziak P. Evidence for existence of molecular stemness markers in porcine ovarian follicular granulosa cells. Med J Cell Biol. 2019; DOI:10.2478/acb-2019-0025.10.2478/acb-2019-0025 Search in Google Scholar

21. Madkour A, Bouamoud N, Kaarouch I, Louanjli N, Saadani B, Assou S, Aboulmaouahib S, Sefrioui O, Amzazi S, Copin H, Benkhalifa M. Follicular fluid and supernatant from cultured cumulus-granulosa cells improve in vitro maturation in patients with polycystic ovarian syndrome. Fertil Steril. 2018;110(4):710–9; DOI:10.1016/J.FERTNSTERT.2018.04.038.10.1016/j.fertnstert.2018.04.03830196968 Search in Google Scholar

22. Bruckova L, Soukup T, Visek B, Moos J, Moosova M, Pavelkova J, Rezabek K, Kucerova L, Micuda S, Brcakova E, Mokry J. Proliferative potential and phenotypic analysis of long-term cultivated human granulosa cells initiated by addition of follicular fluid n.d.; DOI:10.1007/s10815-011-9617-6.10.1007/s10815-011-9617-6322043421822582 Search in Google Scholar

23. Vireque AA, Campos JR, Dentillo DB, Bernuci MP, Campos CO, Silva-De-Sá MF, Ferriani RA, Nunes AA, Rosa-E-Silva ACJDS. Driving Human Granulosa-Luteal Cells Recovered From In Vitro Fertilization Cycles Toward the Follicular Phase Phenotype. Reprod Sci. 2015;22(8):1015–27; DOI:10.1177/1933719115570909.10.1177/193371911557090925701839 Search in Google Scholar

24. Oki Y, Ono H, Motohashi T, Sugiura N, Nobusue H, Kano K. Dedifferentiated follicular granulosa cells derived from pig ovary can transdifferentiate into osteoblasts. Biochem J. 2012;447(2):239–48; DOI:10.1042/BJ20120172.10.1042/BJ20120172345922222839299 Search in Google Scholar

25. Sadat Tahajjodi S, Farashahi Yazd E, Agha-Rahimi A, Aflatoonian R, Ali Khalili M, Mohammadi M, Aflatoonian B. Biological and physiological characteristics of human cumulus cells in adherent culture condition. Int J Reprod Biomed. 2019;18(1):1–10; DOI:10.18502/ijrm.v18i1.6189.10.18502/ijrm.v18i1.6189699612232043066 Search in Google Scholar

26. Orisaka M, Tajima K, Mizutani T, Miyamoto K, Tsang BK, Fukuda S, Yoshida Y, Kotsuji F. Granulosa cells promote differentiation of cortical stromal cells into theca cells in the bovine ovary. Biol Reprod. 2006;75(5):734–40; DOI:10.1095/BIOLREPROD.105.050344.10.1095/biolreprod.105.05034416914692 Search in Google Scholar

27. Ding T, Luo A, Yang S, Lai Z, Wang Y, Shen W, Jiang J, Lu Y, Ma D, Wang S. Effects of basal media and supplements on diethylstilbestrol-treated immature mouse primary granulosa cell growth and regulation of steroidogenesis in vitro. Reprod Domest Anim. 2012;47(3):355–64; DOI:10.1111/J.1439-0531.2011.01879.X.10.1111/j.1439-0531.2011.01879.x21999365 Search in Google Scholar

28. Zırh S, Erol S, Zırh EB, Sokmensuer LK, Bozdag G, Muftuoglu SF. A new isolation and culture method for granulosa cells. Cell Tissue Bank. 2021;22(4):719–26; DOI:10.1007/S10561-021-09929-5.10.1007/s10561-021-09929-533914204 Search in Google Scholar

29. Barano JLS, Hammond JM. Serum-free medium enhances growth and differentiation of cultured pig granulosa cells. Endocrinology. 1985;116(1):51–8; DOI:10.1210/ENDO-116-1-51.10.1210/endo-116-1-513917254 Search in Google Scholar

30. Hensen K, Pook M, Sikut A, Org T, Maimets T, Salumets A, Kurg A. Utilising FGF2, IGF2 and FSH in serum-free protocol for long-term in vitro cultivation of primary human granulosa cells. Mol Cell Endocrinol. 2020;510; DOI:10.1016/J.MCE.2020.110816.10.1016/j.mce.2020.11081632294491 Search in Google Scholar

31. Figenschau Y, Sundsfjord JA, Yousef MI, Fuskevåg OM, Sveinbjörnsson B, Bertheussen K. A simplified serum-free method for preparation and cultivation of human granulosa-luteal cells. Hum Reprod. 1997;12(3):523–31; DOI:10.1093/HUMREP/12.3.523.10.1093/humrep/12.3.5239130754 Search in Google Scholar

32. Lane CA, Pax RA, Bennett JL. L-glutamine: an amino acid required for maintenance of the tegumental membrane potential of Schistosoma mansoni. Parasitology. 1987;94(Pt 2)(2):233–42; DOI:10.1017/S0031182000053919.10.1017/S0031182000053919 Search in Google Scholar

33. Asadi E, Najafi A, Moeini A, Pirjani R, Hassanzadeh G, Mikaeili S, Sale-hi E, Adutwum E, Soleimani M, Khosravi F, Barati M, Abolhassani F. Ovarian tissue culture in the presence of VEGF and fetuin stimulates follicle growth and steroidogenesis. J Endocrinol. 2017;232(2):205–19; DOI:10.1530/JOE-16-0368.10.1530/JOE-16-0368 Search in Google Scholar

34. Max MC, Bizarro-Silva C, Búfalo I, González SM, Lindquist AG, Gomes RG, Barreiros TRR, Lisboa LA, Morotti F, Seneda MM. In vitro culture supplementation of EGF for improving the survival of equine preantral follicles. In Vitro Cell Dev Biol Anim. 2018;54(10):687–91; DOI:10.1007/S11626-018-0296-9.10.1007/s11626-018-0296-9 Search in Google Scholar

35. Palmerini MG, Nottola SA, Tunjung WAS, Kadowaki A, Bianchi S, Cecconi S, Sato E, Macchiarelli G. EGF-FSH supplementation reduces apoptosis of pig granulosa cells in co-culture with cumulus-oocyte complexes. Biochem Biophys Res Commun. 2016;481(1–2):159–64; DOI:10.1016/J.BBRC.2016.10.151.10.1016/j.bbrc.2016.10.151 Search in Google Scholar

36. Nilsson EE, Kezele P, Skinner MK. Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol Cell Endocrinol. 2002;188(1–2):65–73; DOI:10.1016/S0303-7207(01)00746-8.10.1016/S0303-7207(01)00746-8 Search in Google Scholar

37. Bauer S, Patterson PH. Leukemia inhibitory factor promotes neural stem cell self-renewal in the adult brain. J Neurosci. 2006;26(46):12089–99; DOI:10.1523/JNEUROSCI.3047-06.2006.10.1523/JNEUROSCI.3047-06.2006 Search in Google Scholar

38. He Z, Li JJ, Zhen CH, Feng LY, Ding XY. Effect of leukemia inhibitory factor on embryonic stem cell differentiation: implications for supporting neuronal differentiation 2006;27(1):80–90. Search in Google Scholar

39. Komatsu K, Koya T, Wang J, Yamashita M, Kikkawa F, Iwase A. Analysis of the effect of leukemia inhibitory factor on follicular growth in cultured murine ovarian tissue. Biol Reprod. 2015;93(1):1–8; DOI:10.1095/BIOLREPROD.115.128421/2434200. Search in Google Scholar

40. De Matos DG, Miller K, Scott R, Tran CA, Kagan D, Nataraja SG, Clark A, Palmer S. Leukemia inhibitory factor induces cumulus expansion in immature human and mouse oocytes and improves mouse two-cell rate and delivery rates when it is present during mouse in vitro oocyte maturation. Fertil Steril. 2008;90(6):2367–75; DOI:10.1016/J.FERTNSTERT.2007.10.061.10.1016/j.fertnstert.2007.10.061 Search in Google Scholar

41. Xu J, Lawson MS, Yeoman RR, Molskness TA, Ting AY, Stouffer RL, Zelinski MB. Fibrin promotes development and function of macaque primary follicles during encapsulated three-dimensional culture. Hum Reprod. 2013;28(8):2187–200; DOI:10.1093/humrep/det093.10.1093/humrep/det093 Search in Google Scholar

42. Telfer EE, Zelinski MB. Ovarian follicle culture: advances and challenges for human and nonhuman primates. Fertil Steril. 2013;99(6):1523–33; DOI:10.1016/J.FERTNSTERT.2013.03.043.10.1016/j.fertnstert.2013.03.043 Search in Google Scholar

43. He X, Toth TL. In vitro culture of ovarian follicles from Peromyscus. Semin Cell Dev Biol. 2017;61:140–9; DOI:10.1016/j.semcdb.2016.07.006.10.1016/j.semcdb.2016.07.006 Search in Google Scholar

44. Zareifard N, Soleimani A, Talaei-Khozani T, Bahmanpour S. Improved BALB/c mice granulosa cell functions using purified alginate scaffold. Iran J Vet Res. 2018;19(3):182. Search in Google Scholar

45. Jeon MJ, Choi YS, Kim ID, Criswell T, Atala A, Yoo JJ, Jackson JD. Engineering Functional Rat Ovarian Spheroids Using Granulosa and Theca Cells 2021;28(6):1697–708. Search in Google Scholar

46. Azhar S, Tsai L, Maffe W, Reaven E. Cultivation of rat granulosa cells in a serum-free chemically defined medium-a useful model to study lipoprotein metabolism. Biochim Biophys Acta. 1988;963(2):139–50; DOI:10.1016/0005-2760(88)90275-5.10.1016/0005-2760(88)90275-5 Search in Google Scholar

47. Kulus J, Kulus M, Kranc W, Jopek K, Zdun M, Józkowiak M, Jaśkowski JM, Piotrowska-Kempisty H, Bukowska D, Antosik P, Mozdziak P, Kempisty B. Transcriptomic profile of new gene markers encoding proteins responsible for structure of porcine ovarian granulosa cells. Biology (Basel). 2021;10(11):1214; DOI:10.3390/biology10111214.10.3390/biology10111214 Search in Google Scholar

48. Mohammed BT, Donadeu FX. Bovine granulosa cell culture. Methods Mol Biol. 2018;1817:79–87; DOI:10.1007/978-1-4939-8600-2_8.10.1007/978-1-4939-8600-2_8 Search in Google Scholar

49. Beker ARCL, Colenbrander B, Bevers MM. Effect of 17 β-estradiol on the in vitro maturation of bovine oocytes. Theriogenology. 2002;58(9):1663–73; DOI:10.1016/S0093-691X(02)01082-8.10.1016/S0093-691X(02)01082-8 Search in Google Scholar

50. Antonino D de C, Soares MM, Júnior J de M, de Alvarenga PB, Mohallem R de FF, Rocha CD, Vieira LA, de Souza AG, Beletti ME, Alves BG, Jacomini JO, Goulart LR, Alves KA. Three-dimensional levitation culture improves in-vitro growth of secondary follicles in bovine model. Reprod Biomed Online. 2019;38(3):300–11; DOI:10.1016/J.RBMO.2018.11.013.10.1016/j.rbmo.2018.11.013 Search in Google Scholar

51. Ikeda H. Serum-free medium conditions for steroidogenesis of bovine follicular thecal cells cultured on collagen gel matrix. In Vitro Cell Dev Biol. 1990;26(2):193–200; DOI:10.1007/BF02624112.10.1007/BF02624112 Search in Google Scholar

52. Zhang J, Deng Y, Li J, Zi Y, Shi D, Lu F. Theca cell-conditioned medium enhances steroidogenesis competence of buffalo (Bubalus bubalis) granulosa cells. Reprod Domest Anim. 2021;56(2):254–62; DOI:10.1111/RDA.13792.10.1111/rda.13792 Search in Google Scholar

53. Gupta PSP, Nandi S, Ravindranatha BM, Sarma P V. In vitro culture of buffalo (Bubalus bubalis) preantral follicles. Theriogenology. 2002;57(7):1839–54; DOI:10.1016/S0093-691X(02)00694-5.10.1016/S0093-691X(02)00694-5 Search in Google Scholar

54. Baufeld A, Vanselow J. A tissue culture model of estrogen-producing primary bovine granulosa cells. J Vis Exp. 2018;2018(139); DOI:10.3791/58208.10.3791/58208623510430247464 Search in Google Scholar

55. Arunakumari G, Shanmugasundaram N, Rao VH. Development of morulae from the oocytes of cultured sheep preantral follicles. Theriogenology. 2010;74(5):884–94; DOI:10.1016/J.THERIOGENOLOGY.2010.04.013.10.1016/j.theriogenology.2010.04.01320615540 Search in Google Scholar

56. Varnosfaderani SR, Hajian M, Jafarpour F, Zadegan FG, Nasr-Esfahani MH. Granulosa secreted factors improve the developmental competence of cumulus oocyte complexes from small antral follicles in sheep. PLoS One. 2020;15(3); DOI:10.1371/JOURNAL.PONE.0229043.10.1371/journal.pone.0229043707780932182244 Search in Google Scholar

57. Jing J, Jiang X, Chen J, Yao X, Zhao M, Li P, Pan Y, Ren Y, Liu W, Lyu L. Notch signaling pathway promotes the development of ovine ovarian follicular granulosa cells. Anim Reprod Sci. 2017;181:69–78; DOI:10.1016/J.ANIREPROSCI.2017.03.017.10.1016/j.anireprosci.2017.03.017 Search in Google Scholar

58. Brito IR, Silva GM, Sales AD, Lobo CH, Rodrigues GQ, Sousa RF, Moura AAA, Calderón CEM, Bertolini M, Campello CC, Smitz J, Figueiredo JR. Fibrin–alginate hydrogel supports steroidogenesis, in vitro maturation of oocytes and parthenotes production from caprine preantral follicles cultured in group. Reprod Domest Anim. 2016;51(6):997–1009; DOI:10.1111/rda.12779.10.1111/rda.12779 Search in Google Scholar

59. Yao X, Wang Z, El-Samahy MA, Ren C, Liu Z, Wang F, You P. Roles of vitamin D and its receptor in the proliferation and apoptosis of luteinised granulosa cells in the goat. Reprod Fertil Dev. 2020;32(3):335–48; DOI:10.1071/RD18442.10.1071/RD18442 Search in Google Scholar

60. Boon CH, Cao T, Bested SM, Guo QT, Soon CN. “Waste” follicular aspirate from fertility treatment-a potential source of human germline stem cells? Stem Cells Dev. 2005;14(1):11–4; DOI:10.1089/SCD.2005.14.11.10.1089/scd.2005.14.11 Search in Google Scholar

61. Ai A, Tang Z, Liu Y, Yu S, Li B, Huang H, Wang X, Cao Y, Zhang W. Characterization and identification of human immortalized granulosa cells derived from ovarian follicular fluid. Exp Ther Med. 2019;18(3):2167–77; DOI:10.3892/etm.2019.7802.10.3892/etm.2019.7802 Search in Google Scholar

62. Matysiak J, Dereziński P, Klupczyńska A, Hajduk J, S wiatły A, Plewa S, Lemańska A, Jaźwiński P, Banach P, Nowak-Markwitz E, Kokot ZJ. Proteomic and metabolomic strategy of searching for biomarkers of genital cancer diseases using mass spectrometry methods. J Med Sci. 2016;85(4):330–3; DOI:10.20883/JMS.2016.180.10.20883/jms.2016.180 Search in Google Scholar

63. Hanrieder J, Nyakas A, Naessén T, Bergquist J. Proteomic analysis of human follicular fluid using an alternative bottom-up approach. J Proteome Res. 2008;7(1):443–9; DOI:10.1021/PR070277Z.10.1021/pr070277z Search in Google Scholar

64. Yousefi S, Soleimanirad J, Hamdi K, Farzadi L, Ghasemzadeh A, Kazemi M, Mahdipour M, Rahbarghazi R, Nouri M. Distinct effect of fetal bovine serum versus follicular fluid on multipotentiality of human granulosa cells in in vitro condition. Biologicals. 2018;52:44–8; DOI:10.1016/J.BIOLOGICALS.2018.01.002.10.1016/j.biologicals.2018.01.002 Search in Google Scholar

65. Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nat 1988 3366200. 1988;336(6200):684–7; DOI:10.1038/336684a0.10.1038/336684a0 Search in Google Scholar

66. Abir R, Fisch B, Nitke S, Okon E, Raz A, Ben Rafael Z. Morphological study of fully and partially isolated early human follicles. Fertil Steril. 2001;75(1):141–6; DOI:10.1016/S0015-0282(00)01668-X.10.1016/S0015-0282(00)01668-X Search in Google Scholar

67. Shah SM, Saini N, Ashraf S, Singh MK, Manik RS, Singla SK, Palta P, Chauhan MS. Cumulus cell-conditioned medium supports embryonic stem cell differentiation to germ cell-like cells. Reprod Fertil Dev. 2017;29(4):679–93; DOI:10.1071/RD15159.10.1071/RD1515926595369 Search in Google Scholar

68. Kossowska-Tomaszczuk K, Pelczar P, Güven S, Kowalski J, Volpi E, De Geyter C, Scherberich A. A novel three-dimensional culture system allows prolonged culture of functional human granulosa cells and mimics the ovarian environment. Tissue Eng - Part A. 2010;16(6):2063–73; DOI:10.1089/ten.tea.2009.0684.10.1089/ten.tea.2009.068420109057 Search in Google Scholar

69. Hummitzsch K, Ricken AM, Kloß D, Erdmann S, Nowicki MS, Rothermel A, Robitzki AA, Spanel-Borowski K. Spheroids of granulosa cells provide an in vitro model for programmed cell death coupled to steroidogenesis. Differentiation. 2009;77(1):60–9; DOI:10.1016/J.DIFF.2008.09.002.10.1016/j.diff.2008.09.00219281765 Search in Google Scholar

70. Becker J, Walz A, Daube S, Keck C, Pietrowski D. Distinct responses of human granulosa lutein cells after hCG or LH stimulation in a spheroidal cell culture system. Mol Reprod Dev. 2007;74(10):1312–6; DOI:10.1002/MRD.20696.10.1002/mrd.2069617290424 Search in Google Scholar

71. Yadav M, Agrawal H, Pandey M, Singh D, Onteru SK. Three-dimensional culture of buffalo granulosa cells in hanging drop mimics the preovula-tory follicle stage. J Cell Physiol. 2018;233(3):1959–70; DOI:10.1002/JCP.25909.10.1002/jcp.2590928294325 Search in Google Scholar

72. Pandey M, Singh S, Yadav M, Singh D, Onteru SK. Transcriptome analysis of buffalo granulosa cells in three dimensional culture systems. Mol Re-prod Dev. 2021;88(4):287–301; DOI:10.1002/mrd.23465.10.1002/mrd.2346533734523 Search in Google Scholar

73. Green LJ, Shikanov A. In vitro culture methods of preantral follicles. Theriogenology. 2016;86(1):229–38; DOI:10.1016/J.THERIOGENOLOGY.2016.04.036.10.1016/j.theriogenology.2016.04.03627173961 Search in Google Scholar

74. West ER, Shea LD, Woodruff TK. Engineering the follicle microenvironment. Semin Reprod Med. 2007;25(4):287–99; DOI:10.1055/S-2007-980222.10.1055/s-2007-980222264840217594609 Search in Google Scholar

75. Adam AAG, Takahashi Y, Katagiri S, Nagano M. In vitro culture of mouse preantral follicles using membrane inserts and developmental competence of in vitro ovulated oocytes. J Reprod Dev. 2004;50(5):579–86; DOI:10.1262/JRD.50.579.10.1262/jrd.50.57915514465 Search in Google Scholar

76. Choi JK, Agarwal P, He X. In Vitro Culture of Early Secondary Preantral Follicles in Hanging Drop of Ovarian Cell-Conditioned Medium to Obtain MII Oocytes from Outbred Deer Mice. Tissue Eng Part A. 2013;19(23–24):2626; DOI:10.1089/TEN.TEA.2013.0055.10.1089/ten.tea.2013.0055 Search in Google Scholar

77. Kreeger PK, Deck JW, Woodruff TK, Shea LD. The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels. Biomaterials. 2006;27(5):714–23; DOI:10.1016/J.BIOMATERIALS.2005.06.016.10.1016/j.biomaterials.2005.06.016 Search in Google Scholar

78. Woodruff TK, Shea LD. The role of the extracellular matrix in ovarian follicle development. Reprod Sci. 2007;14(8 Suppl):6; DOI:10.1177/1933719107309818.10.1177/1933719107309818 Search in Google Scholar

79. Jones ASK, Shikanov A. Follicle development as an orchestrated signaling network in a 3D organoid. J Biol Eng. 2019;13(1):1–12; DOI:10.1186/S13036-018-0134-3/FIGURES/4. Search in Google Scholar

80. Healy MW, Dolitsky SN, Villancio-Wolter M, Raghavan M, Tillman AR, Morgan NY, Decherney AH, Park S, Wolff EF. Creating an artificial 3-dimensional ovarian follicle culture system using a microfluidic system. Micromachines. 2021;12(3):1–15; DOI:10.3390/MI12030261.10.3390/mi12030261 Search in Google Scholar

81. Picton HM, Harris SE, Muruvi W, Chambers EL. The in vitro growth and maturation of follicles. Reproduction. 2008;136(6):703-15; DOI:10.1530/REP-08-0290.10.1530/REP-08-0290 Search in Google Scholar

82. Gomes JE, Correia SC, Gouveia-Oliveira A, Cidadão AJ, Plancha CE. Three-dimensional environments preserve extracellular matrix compartments of ovarian follicles and increase FSH-dependent growth. Mol Reprod Dev. 1999;54(2):163–72; DOI:https://doi.org/10.1002/(SICI)1098-2795(199910)54:2<163::AID-MRD8>3.0.CO;2-4.10.1002/(SICI)1098-2795(199910)54:2<163::AID-MRD8>3.0.CO;2-4 Search in Google Scholar

83. Smith RM, Woodruff TK, Shea LD. Designing follicle–environment interactions with biomaterials. Cancer Treat Res. 2010;156:11; DOI:10.1007/978-1-4419-6518-9_2.10.1007/978-1-4419-6518-9_2 Search in Google Scholar

84. Heise M, Koepsel R, Russell AJ, McGee EA. Calcium alginate microencapsulation of ovarian follicles impacts FSH delivery and follicle morphology 2005;3(1):1–8. Search in Google Scholar

85. Shikanov A, Xu M, Woodruff TK, Shea LD. Interpenetrating fibrin-alginate matrices for in vitro ovarian follicle development. Biomaterials. 2009;30(29):5476; DOI:10.1016/J.BIOMATERIALS.2009.06.054.10.1016/j.biomaterials.2009.06.054 Search in Google Scholar

86. Joo S, Oh SH, Sittadjody S, Opara EC, Jackson JD, Lee SJ, Yoo JJ, Atala A. The effect of collagen hydrogel on 3D culture of ovarian follicles 2016;11(6); DOI:10.1088/1748-6041/11/6/065009.10.1088/1748-6041/11/6/065009 Search in Google Scholar

87. Desai N, Abdelhafez F, Calabro A, Falcone T. Three dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel: a preliminary investigation of a novel biomaterial for in vitro follicle maturation. Reprod Biol Endocrinol. 2012;10; DOI:10.1186/1477-7827-10-29.10.1186/1477-7827-10-29 Search in Google Scholar

88. Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials. 2010;31(17):4639–56; DOI:10.1016/J.BIOMATERIALS.2010.02.044.10.1016/j.biomaterials.2010.02.044 Search in Google Scholar

89. Mendez U, Zhou H, Shikanov A. Synthetic PEG hydrogel for engineering the environment of ovarian follicles. Methods Mol Biol. 2018;1758:115–28; DOI:10.1007/978-1-4939-7741-3_9.10.1007/978-1-4939-7741-3_929679326 Search in Google Scholar

90. Szczepańska MA, Jagodziński PP, Wender-Ożegowska E. The effect of endometrioma on ovarian reserve. J Med Sci. 2017;86(3):237–9; DOI:10.20883/JMS.2017.201.10.20883/jms.2017.201 Search in Google Scholar

91. Xu F, Lawson MS, Bean Y, Ting AY, Pejovic T, De Geest K, Moffitt M, Mitalipov SM, Xu J. Matrix-free 3D culture supports human follicular development from the unilaminar to the antral stage in vitro yielding morphologically normal metaphase II oocytes. Hum Reprod. 2021;36(5):1326–38; DOI:10.1093/humrep/deab003.10.1093/humrep/deab003860017633681988 Search in Google Scholar

92. Ophir L, Yung Y, Maman E, Rubinstein N, Yerushalmi GM, Haas J, Barzilay E, Hourvitz A. Establishment and validation of a model for non-luteinized human mural granulosa cell culture. Mol Cell Endocrinol. 2014;384(1–2):165–74; DOI:10.1016/J.MCE.2014.01.018.10.1016/j.mce.2014.01.01824508664 Search in Google Scholar

eISSN:
2544-3577
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Molecular Biology, Biochemistry