À propos de cet article

Citez

Avilés M, Gutiérrez-Adán A, Coy P. Oviductal secretions: will they be key factors for the future ARTs? MHR Basic Sci Reprod Med. 2010;16:896–906; DOI:10.1093/molehr/gaq056.10.1093/molehr/gaq056AvilésMGutiérrez-AdánACoyPOviductal secretions: will they be key factors for the future ARTs?MHR Basic Sci Reprod Med20101689690610.1093/molehr/gaq056Open DOISearch in Google Scholar

Zumoffen CM, Gil R, Caille AM, Morente C, Munuce MJ, Ghersevich SA. A protein isolated from human oviductal tissue in vitro secretion, identified as human lactoferrin, interacts with spermatozoa and oocytes and modulates gamete interaction. Hum Reprod. 2013;28:1297–308; DOI:10.1093/humrep/det016.10.1093/humrep/det01623427237ZumoffenCMGilRCailleAMMorenteCMunuceMJGhersevichSAA protein isolated from human oviductal tissue in vitro secretion, identified as human lactoferrin, interacts with spermatozoa and oocytes and modulates gamete interactionHum Reprod201328129730810.1093/humrep/det016Open DOISearch in Google Scholar

Nawrocki MJ, Celichowski P, Jankowski M, Kranc W, Bryja A, Borys-Wójcik S, Jeseta M, Antosik P, Bukowska D, Bruska M, Zabel M, Nowicki M, Kempisty B. Ontology groups representing angiogenesis and blood vessels development are highly up-regulated during porcine oviductal epithelial cells long-term real-time proliferation – a primary cell culture approach. Med J Cell Biol. 2018;6:186–94; DOI:10.2478/acb-2018-0029.10.2478/acb-2018-0029NawrockiMJCelichowskiPJankowskiMKrancWBryjaABorys-WójcikSJesetaMAntosikPBukowskaDBruskaMZabelMNowickiMKempistyBOntology groups representing angiogenesis and blood vessels development are highly up-regulated during porcine oviductal epithelial cells long-term real-time proliferation – a primary cell culture approachMed J Cell Biol201861869410.2478/acb-2018-0029Open DOISearch in Google Scholar

Nawrocki MJ, Budna J, Celichowski P, Khozmi R, Bryja A, Kranc W, Borys S, Ciesiółka S, Knap S, Jeseta M, Bukowska D, Antosik P, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Analysis of fructose and mannose – regulatory peptides signaling pathway in porcine epithelial oviductal cells (OECs) primary cultured long-term in vitro. Adv Cell Biol. 2017;5:129–35; DOI:10.1515/acb-2017-0011.10.1515/acb-2017-0011NawrockiMJBudnaJCelichowskiPKhozmiRBryjaAKrancWBorysSCiesiółkaSKnapSJesetaMBukowskaDAntosikPBrüssowKPBruskaMNowickiMZabelMKempistyBAnalysis of fructose and mannose – regulatory peptides signaling pathway in porcine epithelial oviductal cells (OECs) primary cultured long-term in vitroAdv Cell Biol201751293510.1515/acb-2017-0011Open DOISearch in Google Scholar

Kranc W, Jankowski M, Budna J, Celichowski P, Khozmi R, Bryja A, Borys S, Dyszkiewicz-Konwińska M, Jeseta M, Magas M, Bukowska D, Antosik P, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Amino acids metabolism and degradation is regulated during porcine oviductal epithelial cells (OECs) primary culture in vitro – a signaling pathways activation approach. Med J Cell Biol. 2018;6:18–26; DOI:10.2478/acb-2018-0004.10.2478/acb-2018-0004KrancWJankowskiMBudnaJCelichowskiPKhozmiRBryjaABorysSDyszkiewicz-KonwińskaMJesetaMMagasMBukowskaDAntosikPBrüssowKPBruskaMNowickiMZabelMKempistyBAmino acids metabolism and degradation is regulated during porcine oviductal epithelial cells (OECs) primary culture in vitro – a signaling pathways activation approachMed J Cell Biol20186182610.2478/acb-2018-0004Open DOISearch in Google Scholar

Kranc W, Brązert M, Celichowski P, Bryja A, Nawrocki MJ, Ożegowska K, Jankowski M, Jeseta M, Pawelczyk L, Bręborowicz A, Rachoń D, Skowroński MT, Bruska M, Zabel M, Nowicki M, Kempisty B. ‘Heart development and morphogenesis’ is a novel pathway for human ovarian granulosa cell differentiation during long-term in vitro cultivation-a microarray approach. Mol Med Rep. 2019;19:1705–15; DOI:10.3892/mmr.2019.9837.KrancWBrązertMCelichowskiPBryjaANawrockiMJOżegowskaKJankowskiMJesetaMPawelczykLBręborowiczARachońDSkowrońskiMTBruskaMZabelMNowickiMKempistyB.‘Heart development and morphogenesis’ is a novel pathway for human ovarian granulosa cell differentiation during long-term in vitro cultivation-a microarray approachMol Med Rep20191917051510.3892/mmr.2019.9837Open DOISearch in Google Scholar

Kulus M, Sujka-Kordowska P, Konwerska A, Celichowski P, Kranc W, Kulus J, Piotrowska-Kempisty H, Antosik P, Bukowska D, Iżycki D, Bruska M, Zabel M, Nowicki M, Kempisty B. New Molecular Markers Involved in Regulation of Ovarian Granulosa Cell Morphogenesis, Development and Differentiation during Short-Term Primary In Vitro Culture—Transcriptomic and Histochemical Study Based on Ovaries and Individual Separated Follicles. Int J Mol Sci. 2019;20:3966; DOI:10.3390/ijms20163966.10.3390/ijms20163966KulusMSujka-KordowskaPKonwerskaACelichowskiPKrancWKulusJPiotrowska-KempistyHAntosikPBukowskaDIżyckiDBruskaMZabelMNowickiMKempistyBNew Molecular Markers Involved in Regulation of Ovarian Granulosa Cell Morphogenesis, Development and Differentiation during Short-Term Primary In Vitro Culture—Transcriptomic and Histochemical Study Based on Ovaries and Individual Separated FolliclesInt J Mol Sci201920396610.3390/ijms20163966Open DOISearch in Google Scholar

Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9; DOI:10.1016/0003-2697(87)90021-2.2440339ChomczynskiPSacchiNSingle-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extractionAnal Biochem1987162156910.1016/0003-2697(87)90021-2Search in Google Scholar

Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169-75; DOI:10.1093/nar/gkm415.1757667810.1093/nar/gkm415HuangDWShermanBTTanQKirJLiuDBryantDGuoYStephensRBaselerMWLaneHCLempickiRADAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene listsNucleic Acids Res200735W1697510.1093/nar/gkm415Search in Google Scholar

Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis: Fig. 1. Bioinformatics. 2015;31:2912–4; DOI:10.1093/bioinformatics/btv300.10.1093/bioinformatics/btv300WalterWSánchez-CaboFRicoteMGOplot: an R package for visually combining expression data with functional analysis: Fig. 1Bioinformatics2015312912410.1093/bioinformatics/btv300Open DOISearch in Google Scholar

von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33:D433–7; DOI:10.1093/nar/gki005.15608232vonMering CJensenLJSnelBHooperSDKruppMFoglieriniMJouffreNHuynenMABorkPSTRING: known and predicted protein-protein associations, integrated and transferred across organismsNucleic Acids Res200533D433710.1093/nar/gki005Search in Google Scholar

Besenfelder U, Havlicek V, Brem G. Role of the Oviduct in Early Embryo Development. Reprod Domest Anim. 2012;47:156–63; DOI:10.1111/j.1439-0531.2012.02070.x.10.1111/j.1439-0531.2012.02070.x22827365BesenfelderUHavlicekVBremGRole of the Oviduct in Early Embryo DevelopmentReprod Domest Anim2012471566310.1111/j.1439-0531.2012.02070.xOpen DOISearch in Google Scholar

Player MR, Torrence PF. The 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradation. Pharmacol Ther. 1998;78:55–113; DOI:10.1016/s0163-7258(97)00167-8.10.1016/S0163-7258(97)00167-89623881PlayerMRTorrencePFThe 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradationPharmacol Ther1998785511310.1016/s0163-7258(97)00167-8Open DOISearch in Google Scholar

Kakuta S, Shibata S, Iwakura Y. Genomic Structure of the Mouse 2’,5’-Oligoadenylate Synthetase Gene Family. J Interf Cytokine Res. 2002;22:981–93; DOI:10.1089/10799900260286696.10.1089/10799900260286696KakutaSShibataSIwakuraYGenomic Structure of the Mouse 2’,5’-Oligoadenylate Synthetase Gene FamilyJ Interf Cytokine Res2002229819310.1089/10799900260286696Open DOISearch in Google Scholar

Hartmann R, Olsen HS, Widder S, Jørgensen R, Justesen J. p59OASL, a 2’-5’ oligoadenylate synthetase like protein: A novel human gene related to the 2’-5’ oligoadenylate synthetase family. Nucleic Acids Res. 1998;26:4121–7; DOI:10.1093/nar/26.18.4121.10.1093/nar/26.18.41219722630HartmannROlsenHSWidderSJørgensenRJustesenJp59OASL, a 2’-5’ oligoadenylate synthetase like protein: A novel human gene related to the 2’-5’ oligoadenylate synthetase familyNucleic Acids Res1998264121710.1093/nar/26.18.4121Open DOISearch in Google Scholar

Ishibashi M, Wakita T, Esumi M. 2’,5’-Oligoadenylate synthetase-like gene highly induced by hepatitis C virus infection in human liver is inhibitory to viral replication in vitro. Biochem Biophys Res Commun. 2010;392:397–402; DOI:10.1016/j.bbrc.2010.01.034.10.1016/j.bbrc.2010.01.03420074559IshibashiMWakitaTEsumiM2’,5’-Oligoadenylate synthetase-like gene highly induced by hepatitis C virus infection in human liver is inhibitory to viral replication in vitroBiochem Biophys Res Commun201039239740210.1016/j.bbrc.2010.01.034Open DOISearch in Google Scholar

Shibata S, Kakuta S, Hamada K, Sokawa Y, Iwakura Y. Cloning of a novel 2’,5’-oligoadenylate synthetase-like molecule, Oasl5 in mice. Gene. 2001;271:261–71; DOI:10.1016/s0378-1119(01)00508-x.10.1016/S0378-1119(01)00508-X11418248ShibataSKakutaSHamadaKSokawaYIwakuraYCloning of a novel 2’,5’-oligoadenylate synthetase-like molecule, Oasl5 in miceGene20012712617110.1016/s0378-1119(01)00508-xOpen DOISearch in Google Scholar

Evsikov A V, Graber JH, Brockman JM, Hampl A, Holbrook AE, Singh P, Eppig JJ, Solter D, Knowles BB. Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes Dev. 2006;20:2713–27; DOI:10.1101/gad.1471006.10.1101/gad.147100617015433EvsikovA VGraberJHBrockmanJMHamplAHolbrookAESinghPEppigJJSolterDKnowlesBBCracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryoGenes Dev20062027132710.1101/gad.1471006Open DOISearch in Google Scholar

Yan W, Ma L, Stein P, Pangas SA, Burns KH, Bai Y, Schultz RM, Matzuk MM. Mice Deficient in Oocyte-Specific Oligoadenylate Synthetase-Like Protein OAS1D Display Reduced Fertility. Mol Cell Biol. 2005;25:4615–24; DOI:10.1128/MCB.25.11.4615-4624.2005.1589986410.1128/MCB.25.11.4615-4624.2005YanWMaLSteinPPangasSABurnsKHBaiYSchultzRMMatzukMMMice Deficient in Oocyte-Specific Oligoadenylate Synthetase-Like Protein OAS1D Display Reduced FertilityMol Cell Biol20052546152410.1128/MCB.25.11.4615-4624.2005Search in Google Scholar

Talukder AK, Rashid MB, Yousef MS, Kusama K, Shimizu T, Shimada M, Suarez SS, Imakawa K, Miyamoto A. Oviduct epithelium induces interferon-tau in bovine Day-4 embryos, which generates an anti-inflammatory response in immune cells. Sci Rep. 2018;8:7850; DOI:10.1038/s41598-018-26224-8.2977720510.1038/s41598-018-26224-8TalukderAKRashidMBYousefMSKusamaKShimizuTShimadaMSuarezSSImakawaKMiyamotoAOviduct epithelium induces interferon-tau in bovine Day-4 embryos, which generates an anti-inflammatory response in immune cellsSci Rep20188785010.1038/s41598-018-26224-8Search in Google Scholar

Warfel NA, Kraft AS. PIM kinase (and Akt) biology and signaling in tumors. Pharmacol Ther. 2015;151:41–9; DOI:10.1016/j.pharmthera.2015.03.001.10.1016/j.pharmthera.2015.03.00125749412WarfelNAKraftASPIM kinase (and Akt) biology and signaling in tumorsPharmacol Ther201515141910.1016/j.pharmthera.2015.03.001Open DOISearch in Google Scholar

Magnuson NS, Wang Z, Ding G, Reeves R. Why target PIM1 for cancer diagnosis and treatment? Future Oncol. 2010;6:1461–78; DOI:10.2217/fon.10.106.10.2217/fon.10.10620919829MagnusonNSWangZDingGReevesRWhy target PIM1 for cancer diagnosis and treatment?Future Oncol2010614617810.2217/fon.10.106Open DOISearch in Google Scholar

Xu J, Zhang T, Wang T, You L, Zhao Y. PIM kinases: an overview in tumors and recent advances in pancreatic cancer. Future Oncol. 2014;10:865–76; DOI:10.2217/fon.13.229.2479906610.2217/fon.13.229XuJZhangTWangTYouLZhaoYPIM kinases: an overview in tumors and recent advances in pancreatic cancerFuture Oncol2014108657610.2217/fon.13.229Search in Google Scholar

Jiménez-García MP, Lucena-Cacace A, Robles-Frías MJ, Ferrer I, Narlik-Grassow M, Blanco-Aparicio C, Carnero A. Inflammation and stem markers association to PIM1/PIM2 kinase-induced tumors in breast and uterus. Oncotarget. 2017;8:58872–86; DOI:10.18632/oncotarget.19438.28938604Jiménez-GarcíaMPLucena-CacaceARobles-FríasMJFerrerINarlik-GrassowMBlanco-AparicioCCarneroAInflammation and stem markers association to PIM1/PIM2 kinase-induced tumors in breast and uterusOncotarget20178588728610.18632/oncotarget.19438Search in Google Scholar

Wu Y, Deng Y, Zhu J, Duan Y, Weng WW, Wu X. Pim1 promotes cell proliferation and regulates glycolysis via interaction with MYC in ovarian cancer. Onco Targets Ther. 2018;11:6647–56; DOI:10.2147/OTT.S180520.3034929810.2147/OTT.S180520WuYDengYZhuJDuanYWengWWWuXPim1 promotes cell proliferation and regulates glycolysis via interaction with MYC in ovarian cancerOnco Targets Ther20181166475610.2147/OTT.S180520Search in Google Scholar

Hinz B. Myofibroblasts. Exp Eye Res. 2015;142:56–70; DOI:10.1016/j.exer.2015.07.009.HinzBMyofibroblasts. Exp Eye Res2015142567010.1016/j.exer.2015.07.009Open DOISearch in Google Scholar

Ge J, Burnier L, Adamopoulou M, Kwa MQ, Schaks M, Rottner K, Brake-busch C. RhoA, Rac1, and Cdc42 differentially regulate SMA and collagen i expression in mesenchymal stem cells. J Biol Chem. 2018;293:9358–69; DOI:10.1074/jbc.RA117.001113.10.1074/jbc.RA117.001113GeJBurnierLAdamopoulouMKwaMQSchaksMRottnerKBrake-buschCRhoA, Rac1, and Cdc42 differentially regulate SMA and collagen i expression in mesenchymal stem cellsJ Biol Chem201829393586910.1074/jbc.RA117.001113Open DOISearch in Google Scholar

Endsley MP, Moyle-Heyrman G, Karthikeyan S, Lantvit DD, Davis DA, Wei JJ, Burdette JE. Spontaneous transformation of murine oviductal epithelial cells: A model system to investigate the onset of fallopian-derived tumors. Front Oncol. 2015;5; DOI:10.3389/fonc.2015.00154.EndsleyMPMoyle-HeyrmanGKarthikeyanSLantvitDDDavisDAWeiJJBurdetteJESpontaneous transformation of murine oviductal epithelial cells: A model system to investigate the onset of fallopian-derived tumorsFront Oncol2015510.3389/fonc.2015.00154Open DOISearch in Google Scholar

Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, Deleuze JF, Brewer HB, Duverger N, Denèfle P, Assmann G. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet. 1999;22:352–5; DOI:10.1038/11921.10.1038/1192110431238RustSRosierMFunkeHRealJAmouraZPietteJCDeleuzeJFBrewerHBDuvergerNDenèflePAssmannGTangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1Nat Genet199922352510.1038/11921Open DOISearch in Google Scholar

Fielding PE, Nagao K, Hakamata H, Chimini G, Fielding CJ. A two-step mechanism for free cholesterol and phospholipid efflux from human vascular cells to apolipoprotein A-1. Biochemistry. 2000;39:14113–20; DOI:10.1021/bi0004192.10.1021/bi000419211087359FieldingPENagaoKHakamataHChiminiGFieldingCJA two-step mechanism for free cholesterol and phospholipid efflux from human vascular cells to apolipoprotein A-1Biochemistry200039141132010.1021/bi0004192Open DOISearch in Google Scholar

Vaughan AM, Oram JF. ABCA1 and ABCG1 or ABCG4 act sequentially to remove cellular cholesterol and generate cholesterol-rich HDL. J Lipid Res. 2006;47:2433–43; DOI:10.1194/jlr.M600218-JLR200.10.1194/jlr.M600218-JLR20016902247VaughanAMOramJFABCA1 and ABCG1 or ABCG4 act sequentially to remove cellular cholesterol and generate cholesterol-rich HDLJ Lipid Res20064724334310.1194/jlr.M600218-JLR200Open DOISearch in Google Scholar

Locatelli Y, Forde N, Blum H, Graf A, Piégu B, Mermillod P, Wolf E, Loner-gan P, Saint-Dizier M. Relative effects of location relative to the corpus luteum and lactation on the transcriptome of the bovine oviduct epithelium. BMC Genomics. 2019;20; DOI:10.1186/s12864-019-5616-2.30898106LocatelliYFordeNBlumHGrafAPiéguBMermillodPWolfELoner-ganPSaint-DizierMRelative effects of location relative to the corpus luteum and lactation on the transcriptome of the bovine oviduct epitheliumBMC Genomics20192010.1186/s12864-019-5616-2Search in Google Scholar

Chou J-L, Huang R-L, Shay J, Chen L-Y, Lin S-J, Yan PS, Chao W-T, Lai Y-H, Lai Y-L, Chao T-K, Lee C-I, Tai C-K, Wu S-F, Nephew KP, Huang TH-M, Lai H-C, Chan MWY. Hypermethylation of the TGF-β target, ABCA1 is associated with poor prognosis in ovarian cancer patients. Clin Epigenetics. 2015;7:1; DOI:10.1186/s13148-014-0036-2.25628764ChouJ-LHuangR-LShayJChenL-YLinS-JYanPSChaoW-TLaiY-HLaiY-LChaoT-KLeeC-ITaiC-KWuS-FNephewKPHuangTH-MLaiH-CChanMWYHypermethylation of the TGF-β target, ABCA1 is associated with poor prognosis in ovarian cancer patientsClin Epigenetics20157110.1186/s13148-014-0036-2Search in Google Scholar

Morales CR, Marat AL, Ni X, Yu Y, Oko R, Smith BT, Argraves WS. ATP-binding cassette transporters ABCA1, ABCA7, and ABCG1 in mouse spermatozoa. Biochem Biophys Res Commun. 2008;376:472–7; DOI:10.1016/j.bbrc.2008.09.009.1879361310.1016/j.bbrc.2008.09.009MoralesCRMaratALNiXYuYOkoRSmithBTArgravesWSATP-binding cassette transporters ABCA1, ABCA7, and ABCG1 in mouse spermatozoaBiochem Biophys Res Commun2008376472710.1016/j.bbrc.2008.09.009Search in Google Scholar

eISSN:
2544-3577
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Molecular Biology, Biochemistry