À propos de cet article

Citez

1. Chen J, Ahmad R, Li W, Swain M, Li Q. Biomechanics of oral mucosa. J R Soc Interface. 2015;12(109); DOI:10.1098/rsif.2015.0325.10.1098/rsif.2015.0325453540326224566Search in Google Scholar

2. Agrawal U, Rai H, Jain AK. Morphological and ultrastructural characteristics of extracellular matrix changes in oral squamous cell carcinoma. Ind J Dent Res. 2011;22(1):16; DOI:10.4103/0970-9290.79968.10.4103/0970-9290.7996821525671Search in Google Scholar

3. Naumova EA, Dierkes T, Sprang J, Arnold WH. The oral mucosal surface and blood vessels. Head Face Med. 2013;9:8; DOI:10.1186/1746-160X-9-8.10.1186/1746-160X-9-8363985623497446Search in Google Scholar

4. Zhang H, Zhang J, Streisand JB. Oral mucosal drug delivery: clinical pharmacokinetics and therapeutic applications. Clin Pharmacokinet. 2002;41(9):661–80; DOI:10.2165/00003088-200241090-00003.10.2165/00003088-200241090-0000312126458Search in Google Scholar

5. Jansen RG, van Kuppevelt TH, Daamen WF, Kuijpers-Jagtman AM, Von den Hoff, Johannes W. Tissue reactions to collagen scaffolds in the oral mucosa and skin of rats: environmental and mechanical factors. Arch Oral Biol. 2008;53(4):376–87; DOI:10.1016/j.archoralbio.2007.11.003.10.1016/j.archoralbio.2007.11.00318093570Search in Google Scholar

6. Dyszkiewicz-Konwińska M, Nawrocki M, Huang Y, Bryja A, Celichowski P, Jankowski M, Błochowiak K, Mehr K, Bruska M, Nowicki M, Zabel M, Kempisty B. New gene markers for metabolic processes and homeostasis in porcine buccal pouch mucosa during cells long term-cultivation - a primary culture approach. IJMS. 2018;19(4):1027; DOI:10.3390/ijms19041027.10.3390/ijms19041027597946129596348Search in Google Scholar

7. Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC, Lempicki RA. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8(9):R183; DOI:10.1186/gb-2007-8-9-r183.10.1186/gb-2007-8-9-r183237502117784955Search in Google Scholar

8. Mering C von, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33(Database issue):D433-7; DOI:10.1093/nar/gki005.10.1093/nar/gki00553995915608232Search in Google Scholar

9. Deyrieux AF, Wilson VG. In vitro culture conditions to study keratinocyte differentiation using the HaCaT cell line. Cytotechnology. 2007;54(2):77–83; DOI:10.1007/s10616-007-9076-1.10.1007/s10616-007-9076-1226750019003021Search in Google Scholar

10. Parikh N, Nagarajan P, Sei-ichi M, Sinha S, Garrett-Sinha LA. Isolation and characterization of an immortalized oral keratinocyte cell line of mouse origin. Arch Oral Biol. 2008;53(11):1091–100; DOI:10.1016/j.archoralbio.2008.07.002.10.1016/j.archoralbio.2008.07.002257346518721915Search in Google Scholar

11. Li Y, Yang J, Li S, Zhang J, Zheng J, Hou W, Zhao H, Guo Y, Liu X, Dou K, Situ Z, Yao L. N-myc downstream-regulated gene 2, a novel estrogen-targeted gene, is involved in the regulation of Na+/K+-ATPase. J Biol Chem. 2011;286(37):32289–99; DOI:10.1074/jbc.M111.247825.10.1074/jbc.M111.247825317320021771789Search in Google Scholar

12. Apell H-J, Hitzler T, Schreiber G. Modulation of the Na,K-ATPase by Magnesium Ions. Biochemistry. 2017;56(7):1005–16; DOI:10.1021/acs.biochem.6b01243.10.1021/acs.biochem.6b0124328124894Search in Google Scholar

13. Graf S, Haimel M, Bleda M, Hadinnapola C, Southgate L, Li W, Hodgson J, Liu B, Salmon RM, Southwood M, Machado RD, Martin JM, Treacy CM, Yates K, Daugherty LC, Shamardina O, Whitehorn D, Holden S, Aldred M, Bogaard HJ, Church C, Coghlan G, Condliffe R, Corris PA, Danesino C, Eyries M, Gall H, Ghio S, Ghofrani H-A, Gibbs JSR, Girerd B, Houweling AC, Howard L, Humbert M, Kiely DG, Kovacs G, MacKenzie Ross RV, Moledina S, Montani D, Newnham M, Olschewski A, Olschewski H, Peacock AJ, Pepke-Zaba J, Prokopenko I, Rhodes CJ, Scelsi L, Seeger W, Soubrier F, Stein DF, Suntharalingam J, Swietlik EM, Toshner MR, van Heel DA, Vonk Noordegraaf A, Waisfisz Q, Wharton J, Wort SJ, Ouwehand WH, Soranzo N, Lawrie A, Upton PD, Wilkins MR, Trembath RC, Morrell NW. Identification of rare sequence variation underlying heritable pulmonary arterial hypertension. Nat Commun. 2018;9(1):1416; DOI:10.1038/s41467-018-03672-4.10.1038/s41467-018-03672-4589735729650961Search in Google Scholar

14. Madan M, Patel A, Skruber K, Geerts D, Altomare DA, Iv OP. ATP13A3 and caveolin-1 as potential biomarkers for difluoromethylornithine-based therapies in pancreatic cancers. Am J Cancer Res. 2016;6(6):1231–52.Search in Google Scholar

15. Esmaeili S-A, Nejatollahi F, Sahebkar A. Inhibition of intercellular communication between prostate cancer cells by a specific anti-STEAP-1 single chain antibody. Anticancer Agents Med Chem. 2017; DOI:10.2174/1871520618666171208092115.10.2174/187152061866617120809211529219059Search in Google Scholar

16. Gomes IM, Rocha SM, Gaspar C, Alvelos MI, Santos CR, Socorro S, Maia CJ. Knockdown of STEAP1 inhibits cell growth and induces apoptosis in LNCaP prostate cancer cells counteracting the effect of androgens. Med Oncol. 2018;35(3):40; DOI:10.1007/s12032-018-1100-0.10.1007/s12032-018-1100-029464393Search in Google Scholar

17. Kim K, Mitra S, Wu G, Berka V, Song J, Yu Y, Poget S, Wang D-N, Tsai A-L, Zhou M. Six-Transmembrane Epithelial Antigen of Prostate 1 (STEAP1) has a single b heme and is capable of reducing metal ion complexes and oxygen. Biochemistry. 2016;55(48):6673–84; DOI:10.1021/acs.biochem.6b00610.10.1021/acs.biochem.6b00610725197527792302Search in Google Scholar

18. Challita-Eid PM, Morrison K, Etessami S, An Z, Morrison KJ, Perez-Villar JJ, Raitano AB, Jia X-C, Gudas JM, Kanner SB, Jakobovits A. Monoclonal antibodies to six-transmembrane epithelial antigen of the prostate-1 inhibit intercellular communication in vitro and growth of human tumor xenografts in vivo. Cancer Res. 2007;67(12):5798–805; DOI:10.1158/0008-5472.CAN-06-3849.10.1158/0008-5472.CAN-06-384917575147Search in Google Scholar

19. Vaghjiani RJ, Talma S, Murphy CL. Six-transmembrane epithelial antigen of the prostate (STEAP1 and STEAP2)-differentially expressed by murine and human mesenchymal stem cells. Tissue Eng Part A. 2009;15(8):2073–83; DOI:10.1089/ten.tea.2008.0519.10.1089/ten.tea.2008.051919196137Search in Google Scholar

eISSN:
2544-3577
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Molecular Biology, Biochemistry