À propos de cet article

Citez

Ashby BD, Garrett Q, Willcox MDP. Corneal injuries and wound healing – review of processes and therapies. Austin J Clin Ophthalmol. 2014; 1:id1017. pp. 1–25. AshbyBD GarrettQ WillcoxMDP Corneal injuries and wound healing – review of processes and therapies Austin J Clin Ophthalmol 2014 1 id1017 1 25 Search in Google Scholar

Leong Y-Y, Tong L. Barrier function in the ocular surface: from conventional paradigms to new opportunities. Ocul Surf. 2015; 13:103–9. LeongY-Y TongL Barrier function in the ocular surface: from conventional paradigms to new opportunities Ocul Surf 2015 13 103 9 10.1016/j.jtos.2014.10.00325881994 Search in Google Scholar

Saghizadeh M, Kramerov AA, Svendsen CN, Ljubimov AV. Concise review: stem cells for corneal wound healing. Stem Cells. 2017; 35:2105–14. SaghizadehM KramerovAA SvendsenCN LjubimovAV Concise review: stem cells for corneal wound healing Stem Cells 2017 35 2105 14 10.1002/stem.2667563793228748596 Search in Google Scholar

Liu C-Y, Kao WW-Y. Corneal epithelial wound healing. Prog Mol Biol Transl Sci. 2015; 134:61–71. LiuC-Y KaoWW-Y Corneal epithelial wound healing Prog Mol Biol Transl Sci 2015 134 61 71 10.1016/bs.pmbts.2015.05.00226310149 Search in Google Scholar

Thoft RA, Friend J. The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Opthalmol Vis Sci. 1983; 24:1442–3. ThoftRA FriendJ The X, Y, Z hypothesis of corneal epithelial maintenance Invest Opthalmol Vis Sci 1983 24 1442 3 Search in Google Scholar

Channa R, Zafar SN, Canner JK, Haring RS, Schneider EB, Friedman DS. Epidemiology of eye-related emergency department visits. JAMA Ophthalmol. 2016; 134:312–9. ChannaR ZafarSN CannerJK HaringRS SchneiderEB FriedmanDS Epidemiology of eye-related emergency department visits JAMA Ophthalmol 2016 134 312 9 10.1001/jamaophthalmol.2015.577826821577 Search in Google Scholar

Ahmed F, House RJ, Feldman BH. Corneal abrasions and corneal foreign bodies. Prim Care. 2015; 42:363–75. AhmedF HouseRJ FeldmanBH Corneal abrasions and corneal foreign bodies Prim Care 2015 42 363 75 10.1016/j.pop.2015.05.00426319343 Search in Google Scholar

Sridhar MS. Anatomy of cornea and ocular surface. Indian J Ophthalmol. 2018; 66:190–4. SridharMS Anatomy of cornea and ocular surface Indian J Ophthalmol 2018 66 190 4 10.4103/ijo.IJO_646_17581909329380756 Search in Google Scholar

Van den Bogerd B, Dhubhghaill SN, Koppen C, Tassignon MJ, Zakaria N. A review of the evidence for in vivo corneal endothelial regeneration. Surv Ophthalmol. 2018; 63:149–65. Van den BogerdB DhubhghaillSN KoppenC TassignonMJ ZakariaN A review of the evidence for in vivo corneal endothelial regeneration Surv Ophthalmol 2018 63 149 65 10.1016/j.survophthal.2017.07.00428782549 Search in Google Scholar

Wilson SE, Torricelli AAM, Marino GK. Corneal epithelial basement membrane: structure, function and regeneration. Exp Eye Res. 2020; 194:108002. doi: 10.1016/j.exer.2020.108002 WilsonSE TorricelliAAM MarinoGK Corneal epithelial basement membrane: structure, function and regeneration Exp Eye Res 2020 194 108002 10.1016/j.exer.2020.108002 721774132179076 Open DOISearch in Google Scholar

Altshuler A, Amitai-Lange A, Tarazi N, Dey S, Strinkovsky L, Bhattacharya S, et al. Discrete limbal epithelial stem cell populations mediate corneal homeostasis and wound healing. Cell Stem Cell. 2021; 28:1248–61.e8. AltshulerA Amitai-LangeA TaraziN DeyS StrinkovskyL BhattacharyaS Discrete limbal epithelial stem cell populations mediate corneal homeostasis and wound healing Cell Stem Cell 2021 28 1248 61.e8 10.1016/j.stem.2021.04.003825479833984282 Search in Google Scholar

Vattulainen M, Ilmarinen T, Koivusalo L, Viiri K, Hongisto H, Skottman H. Modulation of Wnt/BMP pathways during corneal differentiation of hPSC maintains ABCG2-positive LSC population that demonstrates increased regenerative potential. Stem Cell Res Ther. 2019; 10:236. doi: 10.1186/s13287-019-1354-2 VattulainenM IlmarinenT KoivusaloL ViiriK HongistoH SkottmanH Modulation of Wnt/BMP pathways during corneal differentiation of hPSC maintains ABCG2-positive LSC population that demonstrates increased regenerative potential Stem Cell Res Ther 2019 10 236 10.1186/s13287-019-1354-2 668351831383008 Open DOISearch in Google Scholar

Liu J, Li Z. Resident innate immune cells in the cornea. Front Immunol. 2021; 12:620284. doi: 10.3389/fimmu.2021.620284 LiuJ LiZ Resident innate immune cells in the cornea Front Immunol 2021 12 620284 10.3389/fimmu.2021.620284 795315333717118 Open DOISearch in Google Scholar

Kaplan DH, Jenison MC, Saeland S, Shlomchik WD, Shlomchik MJ. Epidermal Langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity. 2005; 23: 611–20. KaplanDH JenisonMC SaelandS ShlomchikWD ShlomchikMJ Epidermal Langerhans cell-deficient mice develop enhanced contact hypersensitivity Immunity 2005 23 611 20 10.1016/j.immuni.2005.10.00816356859 Search in Google Scholar

De Agüero MG, Vocanson M, Hacini-Rachinel F, Taillardet M, Sparwasser T, Kissenpfennig A, et al. Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8+ T cells and activating Foxp3+ regulatory T cells. J Clin Invest. 2012; 122:1700–11. De AgüeroMG VocansonM Hacini-RachinelF TaillardetM SparwasserT KissenpfennigA Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8+ T cells and activating Foxp3+ regulatory T cells J Clin Invest 2012 122 1700 11 10.1172/JCI59725333697722523067 Search in Google Scholar

Liu J, Fu T, Song F, Xue Y, Xia C, Liu P, et al. Mast cells participate in corneal development in mice. Sci Rep. 2015; 5:17569. doi: 10.1038/srep17569 LiuJ FuT SongF XueY XiaC LiuP Mast cells participate in corneal development in mice Sci Rep 2015 5 17569 10.1038/srep17569 466717726627131 Open DOISearch in Google Scholar

Brissette-Storkus CS, Reynolds SM, Lepisto AJ, Hendricks RL. Identification of a novel macrophage population in the normal mouse corneal stroma. Invest Ophthalmol Vis Sci. 2002; 43:2264–71. Brissette-StorkusCS ReynoldsSM LepistoAJ HendricksRL Identification of a novel macrophage population in the normal mouse corneal stroma Invest Ophthalmol Vis Sci 2002 43 2264 71 Search in Google Scholar

Liu J, Xue Y, Dong D, Xiao C, Lin C, Wang H, et al. CCR2 and CCR2+ corneal macrophages exhibit distinct characteristics and balance inflammatory responses after epithelial abrasion. Mucosal Immunol. 2017; 10:1145–59. LiuJ XueY DongD XiaoC LinC WangH CCR2 and CCR2+ corneal macrophages exhibit distinct characteristics and balance inflammatory responses after epithelial abrasion Mucosal Immunol 2017 10 1145 59 10.1038/mi.2016.139556284128120849 Search in Google Scholar

Liu J, Xiao C, Wang H, Xue Y, Dong D, Lin C, et al. Local group 2 innate lymphoid cells promote corneal regeneration after epithelial abrasion. Am J Pathol. 2017; 187:1313–26. LiuJ XiaoC WangH XueY DongD LinC Local group 2 innate lymphoid cells promote corneal regeneration after epithelial abrasion Am J Pathol 2017 187 1313 26 10.1016/j.ajpath.2017.02.01028419818 Search in Google Scholar

Ramirez K, Witherden DA, Havran WL. All hands on DE(T) C: epithelial-resident γδ T cells respond to tissue injury. Cell Immunol. 2015; 296:57–61. RamirezK WitherdenDA HavranWL All hands on DE(T) C: epithelial-resident γδ T cells respond to tissue injury Cell Immunol 2015 296 57 61 10.1016/j.cellimm.2015.04.003446620525958272 Search in Google Scholar

Amitai-Lange A, Altshuler A, Bubley J, Dbayat N, Tiosano B, Shalom-Feuerstein R. Lineage tracing of stem and progenitor cells of the murine corneal epithelium. Stem Cells. 2015; 33:230–9. Amitai-LangeA AltshulerA BubleyJ DbayatN TiosanoB Shalom-FeuersteinR Lineage tracing of stem and progenitor cells of the murine corneal epithelium Stem Cells 2015 33 230 9 10.1002/stem.184025187087 Search in Google Scholar

Ljubimov AV, Saghizadeh M. Progress in corneal wound healing. Prog Retin Eye Res. 2015; 49:17–45. LjubimovAV SaghizadehM Progress in corneal wound healing Prog Retin Eye Res 2015 49 17 45 10.1016/j.preteyeres.2015.07.002465184426197361 Search in Google Scholar

Sagga N, Kuffová L, Vargesson N, Erskine L, Collinson JM. Limbal epithelial stem cell activity and corneal epithelial cell cycle parameters in adult and aging mice. Stem Cell Res. 2018; 33:185–98. SaggaN KuffováL VargessonN ErskineL CollinsonJM Limbal epithelial stem cell activity and corneal epithelial cell cycle parameters in adult and aging mice Stem Cell Res 2018 33 185 98 10.1016/j.scr.2018.11.001628823930439642 Search in Google Scholar

Li Z, Burns AR, Han L, Rumbaut RE, Smith CW. IL-17 and VEGF are necessary for efficient corneal nerve regeneration. Am J Pathol. 2011; 178:1106–16. LiZ BurnsAR HanL RumbautRE SmithCW IL-17 and VEGF are necessary for efficient corneal nerve regeneration Am J Pathol 2011 178 1106 16 10.1016/j.ajpath.2010.12.001306981621356362 Search in Google Scholar

Yang L, Di G, Qi X, Qu M, Wang Y, Duan H, et al. Substance P promotes diabetic corneal epithelial wound healing through molecular mechanisms mediated via the neurokinin-1 receptor. Diabetes. 2014; 63:4262–74. YangL DiG QiX QuM WangY DuanH Substance P promotes diabetic corneal epithelial wound healing through molecular mechanisms mediated via the neurokinin-1 receptor Diabetes 2014 63 4262 74 10.2337/db14-016325008176 Search in Google Scholar

Zhang Y, Gao N, Wu L, Lee PS, Me R, Dai C, et al. Role of VIP and Sonic Hedgehog signaling pathways in mediating epithelial wound healing, sensory nerve regeneration, and their defects in diabetic corneas. Diabetes. 2020; 69:1549–61. ZhangY GaoN WuL LeePS MeR DaiC Role of VIP and Sonic Hedgehog signaling pathways in mediating epithelial wound healing, sensory nerve regeneration, and their defects in diabetic corneas Diabetes 2020 69 1549 61 10.2337/db19-0870730612832345752 Search in Google Scholar

Wang X, Li W, Zhou Q, Li J, Wang X, Zhang J, et al. MANF promotes diabetic corneal epithelial wound healing and nerve regeneration by attenuating hyperglycemia-induced endoplasmic reticulum stress. Diabetes. 2020; 69:1264–78. WangX LiW ZhouQ LiJ WangX ZhangJ MANF promotes diabetic corneal epithelial wound healing and nerve regeneration by attenuating hyperglycemia-induced endoplasmic reticulum stress Diabetes 2020 69 1264 78 10.2337/db19-083532312869 Search in Google Scholar

Notara M, Lentzsch A, Coroneo M, Cursiefen C. The role of limbal epithelial stem cells in regulating corneal (lymph) angiogenic privilege and the micromilieu of the limbal niche following UV Exposure. Stem Cells Int. 2018; 2018:8620172. doi: 10.1155/2018/8620172 NotaraM LentzschA CoroneoM CursiefenC The role of limbal epithelial stem cells in regulating corneal (lymph) angiogenic privilege and the micromilieu of the limbal niche following UV Exposure Stem Cells Int 2018 2018 8620172 10.1155/2018/8620172 596449029853920 Open DOISearch in Google Scholar

Cursiefen C, Maruyama K, Bock F, Saban D, Sadrai Z, Lawler J, et al. Thrombospondin 1 inhibits inflammatory lymphangiogenesis by CD36 ligation on monocytes. J Exp Med. 2011; 208:1083–92. CursiefenC MaruyamaK BockF SabanD SadraiZ LawlerJ Thrombospondin 1 inhibits inflammatory lymphangiogenesis by CD36 ligation on monocytes J Exp Med 2011 208 1083 92 10.1084/jem.20092277309234921536744 Search in Google Scholar

Soriano-Romaní L, García-Posadas L, López-García A, Paraoan L, Diebold Y. Thrombospondin-1 induces differential response in human corneal and conjunctival epithelial cells lines under in vitro inflammatory and apoptotic conditions. Exp Eye Res. 2015; 134:1–4. Soriano-RomaníL García-PosadasL López-GarcíaA ParaoanL DieboldY Thrombospondin-1 induces differential response in human corneal and conjunctival epithelial cells lines under in vitro inflammatory and apoptotic conditions Exp Eye Res 2015 134 1 4 10.1016/j.exer.2015.03.00425753839 Search in Google Scholar

Benhar I, London A, Schwartz M. The privileged immunity of immune privileged organs: The case of the eye. Front Immunol. 2012; 3:296. doi: 10.3389/fimmu.2012.00296 BenharI LondonA SchwartzM The privileged immunity of immune privileged organs: The case of the eye Front Immunol 2012 3 296 10.3389/fimmu.2012.00296 344829323049533 Open DOISearch in Google Scholar

Cursiefen C. Immune privilege and angiogenic privilege of the cornea. Chem Immunol Allergy. 2007; 92:50–7. CursiefenC Immune privilege and angiogenic privilege of the cornea Chem Immunol Allergy 2007 92 50 7 10.1159/00009925317264482 Search in Google Scholar

Aureille J, Belaadi N, Guilluy C. Mechanotransduction via the nuclear envelope: a distant reflection of the cell surface. Curr Opin Cell Biol. 2017; 44:59–67. AureilleJ BelaadiN GuilluyC Mechanotransduction via the nuclear envelope: a distant reflection of the cell surface Curr Opin Cell Biol 2017 44 59 67 10.1016/j.ceb.2016.10.00327876470 Search in Google Scholar

Guilluy C, Osborne LD, Van Landeghem L, Sharek L, Superfine R, Garcia-Mata R, Burridge K. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat Cell Biol. 2014; 16:376–81. GuilluyC OsborneLD Van LandeghemL SharekL SuperfineR Garcia-MataR BurridgeK Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus Nat Cell Biol 2014 16 376 81 10.1038/ncb2927 Search in Google Scholar

Kim DH, Wirtz D. Cytoskeletal tension induces the polarized architecture of the nucleus. Biomaterials. 2015; 48:161–72. KimDH WirtzD Cytoskeletal tension induces the polarized architecture of the nucleus Biomaterials 2015 48 161 72 10.1016/j.biomaterials.2015.01.023 Search in Google Scholar

Wu J, Kent IA, Shekhar N, Chancellor TJ, Mendonca A, Dickinson RB, Lele TP. Actomyosin pulls to advance the nucleus in a migrating tissue cell. Biophys J. 2014; 106:7–15. WuJ KentIA ShekharN ChancellorTJ MendoncaA DickinsonRB LeleTP Actomyosin pulls to advance the nucleus in a migrating tissue cell Biophys J 2014 106 7 15 10.1016/j.bpj.2013.11.4489 Search in Google Scholar

Johnson CS, Mian SI, Moroi S, Epstein D, Izatt J, Afshari NA. Role of corneal elasticity in damping of intraocular pressure. Invest Ophthalmol Vis Sci. 2007; 48:2540–4. JohnsonCS MianSI MoroiS EpsteinD IzattJ AfshariNA Role of corneal elasticity in damping of intraocular pressure Invest Ophthalmol Vis Sci 2007 48 2540 4 10.1167/iovs.06-0719 Search in Google Scholar

Pierscionek BK, Asejczyk-Widlicka M, Schachar RA. The effect of changing intraocular pressure on the corneal and scleral curvatures in the fresh porcine eye. Br J Ophthalmol. 2007; 91:801–3. PierscionekBK Asejczyk-WidlickaM SchacharRA The effect of changing intraocular pressure on the corneal and scleral curvatures in the fresh porcine eye Br J Ophthalmol 2007 91 801 3 10.1136/bjo.2006.110221 Search in Google Scholar

Wang L, González S, Dai W, Deng S, Lu L. Effect of hypoxia-regulated polo-like kinase 3 (Plk3) on human limbal stem cell differentiation. J Biol Chem. 2016; 291:16519–29. WangL GonzálezS DaiW DengS LuL Effect of hypoxia-regulated polo-like kinase 3 (Plk3) on human limbal stem cell differentiation J Biol Chem 2016 291 16519 29 10.1074/jbc.M116.725747 Search in Google Scholar

Loureiro RR, Gomes JÁP. Biological modulation of corneal epithelial wound healing. Arq Bras Oftalmol. 2019; 82:78–84. LoureiroRR GomesJÁP Biological modulation of corneal epithelial wound healing Arq Bras Oftalmol 2019 82 78 84 10.5935/0004-2749.20190016 Search in Google Scholar

Cohen S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem. 1962; 237:1555–62. CohenS Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal J Biol Chem 1962 237 1555 62 10.1016/S0021-9258(19)83739-0 Search in Google Scholar

Márquez EB, De Ortueta D, Royo SB, Martínez-Carpio PA. Epidermal growth factor receptor in corneal damage: update and new insights from recent reports. Cutan Ocul Toxicol. 2011; 30:7–14. MárquezEB De OrtuetaD RoyoSB Martínez-CarpioPA Epidermal growth factor receptor in corneal damage: update and new insights from recent reports Cutan Ocul Toxicol 2011 30 7 14 10.3109/15569527.2010.49839821091383 Search in Google Scholar

Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang M-Z, Harris RC. Expression and function of the epidermal growth factor receptor in physiology and disease. Physiol Rev. 2016; 96:1025–69. ChenJ ZengF ForresterSJ EguchiS ZhangM-Z HarrisRC Expression and function of the epidermal growth factor receptor in physiology and disease Physiol Rev 2016 96 1025 69 10.1152/physrev.00030.201533003261 Search in Google Scholar

Zieske JD, Takahashi H, Hutcheon AEK, Dalbone AC. Activation of epidermal growth factor receptor corneal during epithelial migration. Invest Ophthalmol Vis Sci. 2000; 41:1346–55. ZieskeJD TakahashiH HutcheonAEK DalboneAC Activation of epidermal growth factor receptor corneal during epithelial migration Invest Ophthalmol Vis Sci 2000 41 1346 55 Search in Google Scholar

Huo Y, Chen W, Zheng X, Zhao J, Zhang Q, Hou Y, et al. The protective effect of EGF-activated ROS in human corneal epithelial cells by inducing mitochondrial autophagy via activation TRPM2. J Cell Physiol. 2020; 235:7018–29. HuoY ChenW ZhengX ZhaoJ ZhangQ HouY The protective effect of EGF-activated ROS in human corneal epithelial cells by inducing mitochondrial autophagy via activation TRPM2 J Cell Physiol 2020 235 7018 29 10.1002/jcp.2959732083315 Search in Google Scholar

Candar T, Asena L, Alkayid H, Altınörs DD. Galectin-3, IL-1A, IL-6, and EGF levels in corneal epithelium of patients with recurrent corneal erosion syndrome. Cornea. 2020; 39:1354–8. CandarT AsenaL AlkayidH AltınörsDD Galectin-3, IL-1A, IL-6, and EGF levels in corneal epithelium of patients with recurrent corneal erosion syndrome Cornea 2020 39 1354 8 10.1097/ICO.000000000000242232732704 Search in Google Scholar

Guan J, Zhou L, Wang L, Li X, Pan Z. Germinal peptide eye drops promote corneal wound healing and decrease inflammation after alkali injury. Exp Eye Res. 2020; 199:108191. doi: 10.1016/j.exer.2020.108191 GuanJ ZhouL WangL LiX PanZ Germinal peptide eye drops promote corneal wound healing and decrease inflammation after alkali injury Exp Eye Res 2020 199 108191 10.1016/j.exer.2020.108191 32810484 Open DOISearch in Google Scholar

McClintock JL, Ceresa BP. Transforming growth factor-α enhances corneal epithelial cell migration by promoting EGFR recycling. Invest Ophthalmol Vis Sci. 2010; 51:3455–61. McClintockJL CeresaBP Transforming growth factor-α enhances corneal epithelial cell migration by promoting EGFR recycling Invest Ophthalmol Vis Sci 2010 51 3455 61 10.1167/iovs.09-4386290400520181835 Search in Google Scholar

Zhang L, Yuan Y, Yeh L-K, Dong F, Zhang J, Okada Y, et al. Excess transforming growth factor-α changed the cell properties of corneal epithelium and stroma. Invest Ophthalmol Vis Sci. 2020; 61:20. doi: 10.1167/iovs.61.8.20 ZhangL YuanY YehL-K DongF ZhangJ OkadaY Excess transforming growth factor-α changed the cell properties of corneal epithelium and stroma Invest Ophthalmol Vis Sci 2020 61 20 10.1167/iovs.61.8.20 742571932668000 Open DOISearch in Google Scholar

Tolino MA, Block ER, Klarlund JK. Brief treatment with heparin-binding EGF-like growth factor, but not with EGF, is sufficient to accelerate epithelial wound healing. Biochim Biophys Acta. 2011; 1810:875–8. TolinoMA BlockER KlarlundJK Brief treatment with heparin-binding EGF-like growth factor, but not with EGF, is sufficient to accelerate epithelial wound healing Biochim Biophys Acta 2011 1810 875 8 10.1016/j.bbagen.2011.05.011314328621640162 Search in Google Scholar

Yoshioka R, Shiraishi A, Kobayashi T, Morita S-i, Hayashi Y, Higashiyama S, Obashi Y. Corneal epithelial wound healing impaired in keratinocyte-specific HB-EGF-deficient mice in vivo and in vitro. Invest Ophthalmol Vis Sci. 2010; 51:5630–9. YoshiokaR ShiraishiA KobayashiT MoritaS-i HayashiY HigashiyamaS ObashiY Corneal epithelial wound healing impaired in keratinocyte-specific HB-EGF-deficient mice in vivo and in vitro Invest Ophthalmol Vis Sci 2010 51 5630 9 10.1167/iovs.10-515820554614 Search in Google Scholar

Miyagi H, Thomasy SM, Russell P, Murphy CJ. The role of hepatocyte growth factor in corneal wound healing. Exp Eye Res. 2018; 166:49–55. MiyagiH ThomasySM RussellP MurphyCJ The role of hepatocyte growth factor in corneal wound healing Exp Eye Res 2018 166 49 55 10.1016/j.exer.2017.10.006583120029024692 Search in Google Scholar

Kakazu A, Sharma G, Bazan HEP. Association of protein tyrosine phosphatases (PTPs)-1B with c-Met receptor and modulation of corneal epithelial wound healing. Invest Ophthalmol Vis Sci. 2008; 49:2927–35. KakazuA SharmaG BazanHEP Association of protein tyrosine phosphatases (PTPs)-1B with c-Met receptor and modulation of corneal epithelial wound healing Invest Ophthalmol Vis Sci 2008 49 2927 35 10.1167/iovs.07-0709255623418579758 Search in Google Scholar

McBain VA, Forrester JV, McCaig CD. HGF, MAPK, and a small physiological electric field interact during corneal epithelial cell migration. Invest Ophthalmol Vis Sci. 2003; 44:540–7. McBainVA ForresterJV McCaigCD HGF, MAPK, and a small physiological electric field interact during corneal epithelial cell migration Invest Ophthalmol Vis Sci 2003 44 540 7 10.1167/iovs.02-057012556381 Search in Google Scholar

Omoto M, Suri K, Amouzegar A, Li M, Katikireddy KR, Mittal SK, Chauhan SK. Hepatocyte growth factor suppresses inflammation and promotes epithelium repair in corneal injury. Mol Ther. 2017; 25:1881–8. OmotoM SuriK AmouzegarA LiM KatikireddyKR MittalSK ChauhanSK Hepatocyte growth factor suppresses inflammation and promotes epithelium repair in corneal injury Mol Ther 2017 25 1881 8 10.1016/j.ymthe.2017.04.020554263528502469 Search in Google Scholar

Chandrasekher G, Pothula S, Maharaj G, Bazan HEP. Differential effects of hepatocyte growth factor and keratinocyte growth factor on corneal epithelial cell cycle protein expression, cell survival, and growth. Mol Vis. 2014; 20:24–37. ChandrasekherG PothulaS MaharajG BazanHEP Differential effects of hepatocyte growth factor and keratinocyte growth factor on corneal epithelial cell cycle protein expression, cell survival, and growth Mol Vis 2014 20 24 37 Search in Google Scholar

He M, Han T, Wang Y, Wu YH, Qin WS, Du LZ, Zhao CQ. Effects of HGF and KGF gene silencing on vascular endothelial growth factor and its receptors in rat ultraviolet radiation-induced corneal neovascularization. Int J Mol Med. 2019; 43:1888–99. HeM HanT WangY WuYH QinWS DuLZ ZhaoCQ Effects of HGF and KGF gene silencing on vascular endothelial growth factor and its receptors in rat ultraviolet radiation-induced corneal neovascularization Int J Mol Med 2019 43 1888 99 10.3892/ijmm.2019.411430816491 Search in Google Scholar

Wang C, Peng Y, Pan S, Li L. Effect of insulin-like growth factor-1 on corneal surface ultrastructure and nerve regeneration of rabbit eyes after laser in situ keratomileusis. Neurosci Lett. 2014; 558:169–74. WangC PengY PanS LiL Effect of insulin-like growth factor-1 on corneal surface ultrastructure and nerve regeneration of rabbit eyes after laser in situ keratomileusis Neurosci Lett 2014 558 169 74 10.1016/j.neulet.2013.10.06324211688 Search in Google Scholar

Yu F-SX, Yin J, Xu K, Huang J. Growth factors and corneal epithelial wound healing. Brain Res Bull. 2010; 81:229–35. YuF-SX YinJ XuK HuangJ Growth factors and corneal epithelial wound healing Brain Res Bull 2010 81 229 35 10.1016/j.brainresbull.2009.08.024301018719733636 Search in Google Scholar

Shanley LJ, McCaig CD, Forrester JV, Zhao M. Insulin, not leptin, promotes in vitro cell migration to heal monolayer wounds in human corneal epithelium. Invest Ophthalmol Vis Sci. 2004; 45:1088–94. ShanleyLJ McCaigCD ForresterJV ZhaoM Insulin, not leptin, promotes in vitro cell migration to heal monolayer wounds in human corneal epithelium Invest Ophthalmol Vis Sci 2004 45 1088 94 10.1167/iovs.03-1064145928615037573 Search in Google Scholar

Jiang Y, Ju Z, Zhang J, Liu X, Tian J, Mu G. Effects of insulin-like growth factor 2 and its receptor expressions on corneal repair. Int J Clin Exp Pathol. 2015; 8:10185–91. JiangY JuZ ZhangJ LiuX TianJ MuG Effects of insulin-like growth factor 2 and its receptor expressions on corneal repair Int J Clin Exp Pathol 2015 8 10185 91 Search in Google Scholar

Kao WW-Y. Keratin expression by corneal and limbal stem cells during development. Exp Eye Res. 2020; 200:108206. doi: 10.1016/j.exer.2020.108206 KaoWW-Y Keratin expression by corneal and limbal stem cells during development Exp Eye Res 2020 200 108206 10.1016/j.exer.2020.108206 32882212 Open DOISearch in Google Scholar

Colabelli Gisoldi RAM, Pocobelli A, Villani CM, Amato D, Pellegrini G. Evaluation of molecular markers in corneal regeneration by means of autologous cultures of limbal cells and keratoplasty. Cornea. 2010; 29:715–22. Colabelli GisoldiRAM PocobelliA VillaniCM AmatoD PellegriniG Evaluation of molecular markers in corneal regeneration by means of autologous cultures of limbal cells and keratoplasty Cornea 2010 29 715 22 10.1097/ICO.0b013e3181c91ac420489583 Search in Google Scholar

Basu S, Sureka SP, Shanbhag SS, Kethiri AR, Singh V, Sangwan VS. Simple limbal epithelial transplantation: long-term clinical outcomes in 125 cases of unilateral chronic ocular surface burns. Ophthalmology. 2016; 123:1000–10. BasuS SurekaSP ShanbhagSS KethiriAR SinghV SangwanVS Simple limbal epithelial transplantation: long-term clinical outcomes in 125 cases of unilateral chronic ocular surface burns Ophthalmology 2016 123 1000 10 10.1016/j.ophtha.2015.12.04226896125 Search in Google Scholar

Ker-Woon C, Ghafar NA, Kien Hui C, Yusof YAM, Ngah WZW. The effects of acacia honey on in vitro corneal abrasion wound healing model. BMC Cell Biol. 2015; 16:2. doi: 10.1186/s12860-015-0053-9 Ker-WoonC GhafarNA Kien HuiC YusofYAM NgahWZW The effects of acacia honey on in vitro corneal abrasion wound healing model BMC Cell Biol 2015 16 2 10.1186/s12860-015-0053-9 434028725887200 Open DOISearch in Google Scholar

Sotozono C, He J, Matsumoto Y, Kita M, Imanishi J, Kinoshita S. Cytokine expression in the alkali-burned cornea. Curr Eye Res. 1997; 16:670–6. SotozonoC HeJ MatsumotoY KitaM ImanishiJ KinoshitaS Cytokine expression in the alkali-burned cornea Curr Eye Res 1997 16 670 6 10.1076/ceyr.16.7.670.50579222084 Search in Google Scholar

Yan C, Gao N, Sun H, Yin J, Lee P, Zhou L, et al. Targeting imbalance between IL-1β and IL-1 receptor antagonist ameliorates delayed epithelium wound healing in diabetic mouse corneas. Am J Pathol. 2016; 186:1466–80. YanC GaoN SunH YinJ LeeP ZhouL Targeting imbalance between IL-1β and IL-1 receptor antagonist ameliorates delayed epithelium wound healing in diabetic mouse corneas Am J Pathol 2016 186 1466 80 10.1016/j.ajpath.2016.01.019490114327109611 Search in Google Scholar

Tanaka H, Fukuda K, Ishida W, Harada Y, Sumi T, Fukushima A. Rebamipide increases barrier function and attenuates TNFα-induced barrier disruption and cytokine expression in human corneal epithelial cells. Br J Ophthalmol. 2013; 97:912–6. TanakaH FukudaK IshidaW HaradaY SumiT FukushimaA Rebamipide increases barrier function and attenuates TNFα-induced barrier disruption and cytokine expression in human corneal epithelial cells Br J Ophthalmol 2013 97 912 6 10.1136/bjophthalmol-2012-30286823603753 Search in Google Scholar

Okada Y, Ikeda K, Yamanaka O, Miyamoto T, Kitano A, Kao WW-Y, Saika S. TNFα suppression of corneal epithelium migration. Mol Vis. 2007; 13:1428–35. OkadaY IkedaK YamanakaO MiyamotoT KitanoA KaoWW-Y SaikaS TNFα suppression of corneal epithelium migration Mol Vis 2007 13 1428 35 Search in Google Scholar

Yang L, Zhang S, Duan H, Dong M, Hu X, Zhang Z, et al. Different effects of pro-inflammatory factors and hyperosmotic stress on corneal epithelial stem/progenitor cells and wound healing in mice. Stem Cells Transl Med. 2019; 8:46–57. YangL ZhangS DuanH DongM HuX ZhangZ Different effects of pro-inflammatory factors and hyperosmotic stress on corneal epithelial stem/progenitor cells and wound healing in mice Stem Cells Transl Med 2019 8 46 57 10.1002/sctm.18-0005631244730302939 Search in Google Scholar

Wang X, Zhang S, Dong M, Li Y, Zhou Q, Yang L. The proinflammatory cytokines IL-1β and TNF-α modulate corneal epithelial wound healing through p16Ink4a suppressing STAT3 activity. J Cell Physiol. 2020; 235:10081–93. WangX ZhangS DongM LiY ZhouQ YangL The proinflammatory cytokines IL-1β and TNF-α modulate corneal epithelial wound healing through p16Ink4a suppressing STAT3 activity J Cell Physiol 2020 235 10081 93 10.1002/jcp.2982332474927 Search in Google Scholar

Torricelli AAM, Singh V, Santhiago MR, Wilson SE. The corneal epithelial basement membrane: structure, function, and disease. Invest Ophthalmol Vis Sci. 2013; 54:6390–400. TorricelliAAM SinghV SanthiagoMR WilsonSE The corneal epithelial basement membrane: structure, function, and disease Invest Ophthalmol Vis Sci 2013 54 6390 400 10.1167/iovs.13-12547378765924078382 Search in Google Scholar

Kabosova A, Azar DT, Bannikov GA, Campbell KP, Durbeej M, Ghohestani RF, et al. Compositional differences between infant and adult human corneal basement membranes. Invest Ophthalmol Vis Sci. 2007; 48:4989–99. KabosovaA AzarDT BannikovGA CampbellKP DurbeejM GhohestaniRF Compositional differences between infant and adult human corneal basement membranes Invest Ophthalmol Vis Sci 2007 48 4989 99 10.1167/iovs.07-0654215175817962449 Search in Google Scholar

Boudko SP, Danylevych N, Hudson BG, Pedchenko VK. Basement membrane collagen IV: isolation of functional domains. In: Mecham RP, editor. Methods in extracellular matrix biology. San Diego, CA: Academic Press; 2018, p. 171–85. (Wilson L, Tran P, series editors. Methods Cell Biol., vol. 143). BoudkoSP DanylevychN HudsonBG PedchenkoVK Basement membrane collagen IV: isolation of functional domains In: MechamRP editor. Methods in extracellular matrix biology San Diego, CA Academic Press 2018 171 85 (Wilson L, Tran P, series editors. Methods Cell Biol., vol. 143). 10.1016/bs.mcb.2017.08.010582853029310777 Search in Google Scholar

Kinsella MG, Wight TN. Perlecan: an extracellular matrix heparan sulfate proteoglycan that regulates key events in vascular development and disease. In: Garg HG, Linhardt RJ, Hales CA, editors. Chemistry and biology of heparin and heparan sulfate. London: Elsevier; 2005; p. 607–35. KinsellaMG WightTN Perlecan: an extracellular matrix heparan sulfate proteoglycan that regulates key events in vascular development and disease In: GargHG LinhardtRJ HalesCA editors. Chemistry and biology of heparin and heparan sulfate London Elsevier 2005 607 35 10.1016/B978-008044859-6/50023-X Search in Google Scholar

Barrera V, Troughton LD, Iorio V, Liu S, Oyewole O, Sheridan CM, Hamill KJ. Differential distribution of laminin N-terminus α31 across the ocular surface: implications for corneal wound repair. Invest Ophthalmol Vis Sci. 2018; 59:4082–93. BarreraV TroughtonLD IorioV LiuS OyewoleO SheridanCM HamillKJ Differential distribution of laminin N-terminus α31 across the ocular surface: implications for corneal wound repair Invest Ophthalmol Vis Sci 2018 59 4082 93 10.1167/iovs.18-24037673564930098195 Search in Google Scholar

Inomata T, Ebihara N, Funaki T, Matsuda A, Watanabe Y, Ning L, et al. Perlecan-deficient mutation impairs corneal epithelial structure. Invest Ophthalmol Vis Sci. 2012; 53:1277–84. InomataT EbiharaN FunakiT MatsudaA WatanabeY NingL Perlecan-deficient mutation impairs corneal epithelial structure Invest Ophthalmol Vis Sci 2012 53 1277 84 10.1167/iovs.11-874222266517 Search in Google Scholar

Torricelli AAM, Marino GK, Santhanam A, Wu J, Singh A, Wilson SE. Epithelial basement membrane proteins perlecan and nidogen-2 are up-regulated in stromal cells after epithelial injury in human corneas. Exp Eye Res. 2015; 134:33–8. TorricelliAAM MarinoGK SanthanamA WuJ SinghA WilsonSE Epithelial basement membrane proteins perlecan and nidogen-2 are up-regulated in stromal cells after epithelial injury in human corneas Exp Eye Res 2015 134 33 8 10.1016/j.exer.2015.03.016442601725797478 Search in Google Scholar

Gallego-Muñoz P, Lorenzo-Martín E, Fernández I, Herrero-Pérez C, Martínez-García MC. Nidogen-2: location and expression during corneal wound healing. Exp Eye Res. 2019; 178:1–9. Gallego-MuñozP Lorenzo-MartínE FernándezI Herrero-PérezC Martínez-GarcíaMC Nidogen-2: location and expression during corneal wound healing Exp Eye Res 2019 178 1 9 10.1016/j.exer.2018.09.00430243864 Search in Google Scholar

Beyer EC, Berthoud VM. Gap junction gene and protein families: connexins, innexins, and pannexins. Biochim Biophys Acta Biomembr. 2018; 1860:5–8. BeyerEC BerthoudVM Gap junction gene and protein families: connexins, innexins, and pannexins Biochim Biophys Acta Biomembr 2018 1860 5 8 10.1016/j.bbamem.2017.05.016570498128559187 Search in Google Scholar

Ratkay-Traub I, Hopp B, Bor Z, Dux L, Becker DL, Krenacs T. Regeneration of rabbit cornea following excimer laser photorefractive keratectomy: a study on gap junctions, epithelial junctions and epidermal growth factor receptor expression in correlation with cell proliferation. Exp Eye Res. 2001; 73:291–302. Ratkay-TraubI HoppB BorZ DuxL BeckerDL KrenacsT Regeneration of rabbit cornea following excimer laser photorefractive keratectomy: a study on gap junctions, epithelial junctions and epidermal growth factor receptor expression in correlation with cell proliferation Exp Eye Res 2001 73 291 302 10.1006/exer.2001.104011520104 Search in Google Scholar

Ormonde S, Chou C-Y, Goold L, Petsoglou C, Al-Taie R, Sherwin T, et al. Regulation of connexin43 gap junction protein triggers vascular recovery and healing in human ocular persistent epithelial defect wounds. J Membr Biol. 2012; 245:381–8. OrmondeS ChouC-Y GooldL PetsoglouC Al-TaieR SherwinT Regulation of connexin43 gap junction protein triggers vascular recovery and healing in human ocular persistent epithelial defect wounds J Membr Biol 2012 245 381 8 10.1007/s00232-012-9460-422797940 Search in Google Scholar

Elbadawy HM, Mirabelli P, Xeroudaki M, Parekh M, Bertolin M, Breda C, et al. Effect of connexin 43 inhibition by the mimetic peptide Gap27 on corneal wound healing, inflammation and neovascularization. Br J Pharmacol. 2016; 173:2880–93. ElbadawyHM MirabelliP XeroudakiM ParekhM BertolinM BredaC Effect of connexin 43 inhibition by the mimetic peptide Gap27 on corneal wound healing, inflammation and neovascularization Br J Pharmacol 2016 173 2880 93 10.1111/bph.13568505513827472295 Search in Google Scholar

Chen Y, Thompson DC, Koppaka V, Jester JV, Vasiliou V. Ocular aldehyde dehydrogenases: protection against ultraviolet damage and maintenance of transparency for vision. Prog Retin Eye Res. 2013; 33:28–39. ChenY ThompsonDC KoppakaV JesterJV VasiliouV Ocular aldehyde dehydrogenases: protection against ultraviolet damage and maintenance of transparency for vision Prog Retin Eye Res 2013 33 28 39 10.1016/j.preteyeres.2012.10.001357059423098688 Search in Google Scholar

Sunny SS, Lachova J, Dupacova N, Zitova A, Kozmik Z. Generation and characterization of Aldh3-Cre transgenic mice as a tool for conditional gene deletion in postnatal cornea. Sci Rep. 2020; 10:9083. doi: 10.1038/s41598-020-65878-1 SunnySS LachovaJ DupacovaN ZitovaA KozmikZ Generation and characterization of Aldh3-Cre transgenic mice as a tool for conditional gene deletion in postnatal cornea Sci Rep 2020 10 9083 10.1038/s41598-020-65878-1 727011132493941 Open DOISearch in Google Scholar

Pappa A, Brown D, Koutalos Y, DeGregori J, White C, Vasiliou V. Human aldehyde dehydrogenase 3A1 inhibits proliferation and promotes survival of human corneal epithelial cells. J Biol Chem. 2005; 280:27998–8006. PappaA BrownD KoutalosY DeGregoriJ WhiteC VasiliouV Human aldehyde dehydrogenase 3A1 inhibits proliferation and promotes survival of human corneal epithelial cells J Biol Chem 2005 280 27998 8006 10.1074/jbc.M50369820015905174 Search in Google Scholar

Jester JV, Brown D, Pappa A, Vasiliou V. Myofibroblast differentiation modulates keratocyte crystallin protein expression, concentration, and cellular light scattering. Invest Ophthalmol Vis Sci. 2012; 53:770–8. JesterJV BrownD PappaA VasiliouV Myofibroblast differentiation modulates keratocyte crystallin protein expression, concentration, and cellular light scattering Invest Ophthalmol Vis Sci 2012 53 770 8 10.1167/iovs.11-9092331741922247459 Search in Google Scholar

Sax CM, Salamon C, Kays WT, Guo J, Yu FX, Cuthbertson RA, Piatigorsky J. Transketolase is a major protein in the mouse cornea. J Biol Chem. 1996; 271:33568–74. SaxCM SalamonC KaysWT GuoJ YuFX CuthbertsonRA PiatigorskyJ Transketolase is a major protein in the mouse cornea J Biol Chem 1996 271 33568 74 10.1074/jbc.271.52.335688969223 Search in Google Scholar

Kitazawa K, Hikichi T, Nakamura T, Sotozono C, Kinoshita S, Masui S. PAX6 regulates human corneal epithelium cell identity. Exp Eye Res. 2017; 154:30–8. KitazawaK HikichiT NakamuraT SotozonoC KinoshitaS MasuiS PAX6 regulates human corneal epithelium cell identity Exp Eye Res 2017 154 30 8 10.1016/j.exer.2016.11.00527818314 Search in Google Scholar

McKay TB, Schlötzer-Schrehardt U, Pal-Ghosh S, Stepp MA. Integrin: basement membrane adhesion by corneal epithelial and endothelial cells. Exp Eye Res. 2020; 198:108138. doi: 10.1016/j.exer.2020.108138 McKayTB Schlötzer-SchrehardtU Pal-GhoshS SteppMA Integrin: basement membrane adhesion by corneal epithelial and endothelial cells Exp Eye Res 2020 198 108138 10.1016/j.exer.2020.108138 750880732712184 Open DOISearch in Google Scholar

Storm RJ, Persson BD, Skalman LN, Frängsmyr L, Lindström M, Rankin G, et al. Human adenovirus type 37 uses αvβ1 and α3β1 integrins for infection of human corneal cells. J Virol. 2017; 91:e02019-16. doi: 10.1128/JVI.02019-16 StormRJ PerssonBD SkalmanLN FrängsmyrL LindströmM RankinG Human adenovirus type 37 uses αvβ1 and α3β1 integrins for infection of human corneal cells J Virol 2017 91 e02019-16 10.1128/JVI.02019-16 530996327974569 Open DOISearch in Google Scholar

Tighe S, Moein H-R, Chua L, Cheng A, Hamrah P, Tseng SCG. Topical cryopreserved amniotic membrane and umbilical cord eye drops promote re-epithelialization in a murine corneal abrasion model. Invest Ophthalmol Vis Sci. 2017; 58:1586–93. TigheS MoeinH-R ChuaL ChengA HamrahP TsengSCG Topical cryopreserved amniotic membrane and umbilical cord eye drops promote re-epithelialization in a murine corneal abrasion model Invest Ophthalmol Vis Sci 2017 58 1586 93 10.1167/iovs.16-2083428288269 Search in Google Scholar

Soleimanifar F, Mortazavi Y, Nadri S, Soleimani M. Conjunctiva derived mesenchymal stem cell (CJMSCs) as a potential platform for differentiation into corneal epithelial cells on bioengineered electrospun scaffolds. J Biomed Mater Res A. 2017; 105:2703–11. SoleimanifarF MortazaviY NadriS SoleimaniM Conjunctiva derived mesenchymal stem cell (CJMSCs) as a potential platform for differentiation into corneal epithelial cells on bioengineered electrospun scaffolds J Biomed Mater Res A 2017 105 2703 11 10.1002/jbm.a.3612328556557 Search in Google Scholar

Tang Q, Luo C, Lu B, Fu Q, Yin H, Qin Z, et al. Thermosensitive chitosan-based hydrogels releasing stromal cell derived factor-1 alpha recruit MSC for corneal epithelium regeneration. Acta Biomater. 2017; 61:101–13. TangQ LuoC LuB FuQ YinH QinZ Thermosensitive chitosan-based hydrogels releasing stromal cell derived factor-1 alpha recruit MSC for corneal epithelium regeneration Acta Biomater 2017 61 101 13 10.1016/j.actbio.2017.08.00128780431 Search in Google Scholar

Kong B, Sun W, Chen G, Tang S, Li M, Shao Z, Mi S. Tissue-engineered cornea constructed with compressed collagen and laser-perforated electrospun mat. Sci Rep. 2017; 7:970. doi: 10.1038/s41598-017-01072-0 KongB SunW ChenG TangS LiM ShaoZ MiS Tissue-engineered cornea constructed with compressed collagen and laser-perforated electrospun mat Sci Rep 2017 7 970 10.1038/s41598-017-01072-0 543052928428541 Open DOISearch in Google Scholar

Sharma N, Singh D, Maharana PK, Kriplani A, Velpandian T, Pandey RM, Vajpayee RB. Comparison of amniotic membrane transplantation and umbilical cord serum in acute ocular chemical burns: a randomized controlled trial. Am J Ophthalmol. 2016; 168:157–63. SharmaN SinghD MaharanaPK KriplaniA VelpandianT PandeyRM VajpayeeRB Comparison of amniotic membrane transplantation and umbilical cord serum in acute ocular chemical burns: a randomized controlled trial Am J Ophthalmol 2016 168 157 63 10.1016/j.ajo.2016.05.01027210276 Search in Google Scholar

Nowell CS, Odermatt PD, Azzolin L, Hohnel S, Wagner EF, Fantner GE, et al. Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction. Nat Cell Biol. 2016; 18:168–80. NowellCS OdermattPD AzzolinL HohnelS WagnerEF FantnerGE Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction Nat Cell Biol 2016 18 168 80 10.1038/ncb3290619519426689676 Search in Google Scholar

Molladavoodi S, Kwon H-J, Medley J, Gorbet M. Human corneal epithelial cell response to substrate stiffness. Acta Biomater. 2015; 11:324–32. MolladavoodiS KwonH-J MedleyJ GorbetM Human corneal epithelial cell response to substrate stiffness Acta Biomater 2015 11 324 32 10.1016/j.actbio.2014.10.00525305512 Search in Google Scholar

Masterton S, Ahearne M. Influence of polydimethylsiloxane substrate stiffness on corneal epithelial cells. R Soc Open Sci. 2019; 6:191796. doi: 10.1098/rsos.191796 MastertonS AhearneM Influence of polydimethylsiloxane substrate stiffness on corneal epithelial cells R Soc Open Sci 2019 6 191796 10.1098/rsos.191796 693628331903218 Open DOISearch in Google Scholar

Xu P, Londregan A, Rich C, Trinkaus-Randall V. Changes in epithelial and stromal corneal stiffness occur with age and obesity. Bioengineering (Basel). 2020; 7:14. doi: 10.3390/bioengineering7010014 XuP LondreganA RichC Trinkaus-RandallV Changes in epithelial and stromal corneal stiffness occur with age and obesity Bioengineering (Basel) 2020 7 14 10.3390/bioengineering7010014 717530732046198 Open DOISearch in Google Scholar

eISSN:
1875-855X
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine