Accès libre

New iterative schemes for solving variational inequality and fixed points problems involving demicontractive and quasi-nonexpansive mappings in Banach spaces

   | 26 déc. 2019
À propos de cet article

Citez

Introduction

Let H be a real Hilbert space with inner product 〈⋅, ⋅〉H and norm ∥⋅∥H and K is a nonempty closed convex subset of H. A mapping A : HH is said to be k-strongly monotone if there exists k ∈ (0, 1) such that for all x, yD(A),

AxAy,xyHkxy2. $$\begin{array}{} \displaystyle \langle Ax-Ay, x-y\rangle_H \geq k\|x-y\|^2. \end{array}$$

A mapping A : HH is said to be strongly positive bounded linear if there exists a constant k > 0 such that

Ax,xHkx2,xH. $$\begin{array}{} \displaystyle \langle Ax, x\rangle_H\geq k\|x\|^2,\,\,~~\forall~x\in H. \end{array}$$

Remark 1

From the definition of A, we note that strongly positive bounded linear operator A is a ∥A∥-Lipschitzian and k-strongly monotone operator.

Recall that the mapping T : KK is said to be Lipschitz if there exists an L ≥ 0 such that

TxTyLxy,x,yK, $$\begin{array}{} \displaystyle \|Tx-Ty\|\le L\|x-y\|,\,\, ~~~\forall x,y\in K, \end{array}$$

if L < 1, T is called contraction and if L = 1, T is called nonexpansive. We denote by Fix(T) the set of fixed points of the mapping T, that is Fix(T) := {xD(T) : x = Tx}. We assume that Fix(T) is nonempty. If T is nonexpansive mapping, it is well known Fix(T) is closed and convex. A map T is called quasi-nonexpansive if ∥Txp∥ ≤ ∥xp∥ holds for all x in K and pFix(T). The mapping T : KK is said to be firmly nonexpansive, if

TxTy2xy2(xy)(TxTy)2,x,yK. $$\begin{array}{} \displaystyle \|Tx-Ty\|^2\leq \|x-y\|^2 -\|(x - y)-(Tx-Ty) \|^2,\,\forall x,y\in K. \end{array}$$

A mapping T : KH is called k-strictly pseudo-contractive if there exists k ∈ [0, 1) such that

TxTy2xy2+kxy(TxTy)2x,yK. $$\begin{array}{} \displaystyle \|Tx-Ty\|^2 \leq \|x-y\|^2+k\|x-y-(Tx-Ty)\|^2 \qquad \forall x,y\in K. \end{array}$$

A map T is called k-demi-contractive if Fix(T) ≠ ∅ and for k ∈ [0, 1), we have

Txpxp+kxTx2xK,pFix(T). $$\begin{array}{} \displaystyle \|Tx-p\|\leq \|x-p\|+k\|x-Tx\|^2 \qquad \forall x\in K,\,\,\, p \in Fix(T ). \end{array}$$

We note that the following inclusions hold for the classes of the mappings:

firmly nonexpansive ⊂ nonexpansive ⊂ quasi-nonexpansive ⊂ k-strictly pseudo-contractive ⊂ k-demi-contractive.

The following example is k-demi-contractive mapping which is not k-strictly pseudo- contractive mapping.

Example 1

Let H = ℝ and K = [–1, 1]. Define T : KK by

Tx=23xsin(1x),x00x=0. $$\begin{array}{} \displaystyle Tx= \left \{ \begin{array}{ll} \dfrac{2}{3}x\sin(\frac{1}{x}),\,\,\, x\neq 0\\\\ 0\,\,\,\,\,\,\, x=0. \end{array} \right. \end{array}$$

Clearly Fix(T) = {0}. For xK, we have

|Tx0|2=|23xsin(1x)|2|23x|2|x|2|x0|2+k|xTx|2k[0,1). $$\begin{array}{} \begin{split} \displaystyle \vert Tx-0 \vert^2 &=& \vert \dfrac{2}{3}x\sin(\frac{1}{x}) \vert^2\\ &\leq & \vert \dfrac{2}{3}x \vert^2\\ &\leq & \vert x \vert^2\\ &\leq & \vert x-0 \vert^2+ k \vert x-Tx\vert^2\,\,\, \forall k\in [0, 1). \end{split} \end{array}$$

Thus T is k demi-contratcive for k ∈ [0, 1). To see that T is not k strictly pseudo-contractive, choose x = 2π $\begin{array}{} \dfrac{2}{\pi} \end{array}$ and y = 23π $\begin{array}{} \dfrac{2}{3\pi} \end{array}$, then

|TxTy|2>|xy|2+k|xy(TxTy)|2. $$\begin{array}{} \displaystyle \vert Tx-Ty \vert^2 \gt \vert x-y \vert^2+k \vert x-y-(Tx-Ty)\vert^2. \end{array}$$

Hence, T is not k strictly pseudo-contractive mapping for k ∈ [0, 1).

Example 2

(Example of a Demicontractive Function which is not Quasi-nonexpansive and is not Pseudocontractive). Let f be a real function defined by f(x) = –x2x; it can be seen that f : [–2, 1] → [–2, 1]. This function is demicontractive on [–2, 1] and continuous. It is not quasi-nonexpansive and is not pseudocontractive on [–2, 1] (check for instance the condition of pseudocontractivity for x = –1 .5 and y = –0 . 6).

Fixed point thoery is one of the most powerful and important tools of modern mathematics and may be considered a core subject of nonlinear analysis. In the last few decades, the problem of nonlinear analysis with its relation to fixed point theory has emerged as a rapidly growing area of research because of its applications in game theory, optimization problem, control theory, integral and differential equations and inclusions, dynamic systems theory, signal and image processing, and so on. The crucial key of this success is due to the possibility of representing various problems arising in the above disciplines, in the form of an equivalent fixed point problem. Until now there have been many effective algorithms for solving fixed point problem, the reader can consult [5, 8, 11, 14, 17, 18, 22, 23].

Recently, iterative methods for nonexpansive mappings have been applied to solve convex minimization see, e.g., [10, 14, 19] and the references therein. A typical problem is to minimize a quadratic function over the set of the fixed points of a nonexpansive mapping on a real Hilbert space H

minxFix(T)f(x):=12Ax,xb,x. $$\begin{array}{} \displaystyle \min_{x\in Fix(T)}\,f(x):= \dfrac{1}{2}\langle Ax, x \rangle-\langle b, x\rangle. \end{array}$$

In [19], Xu proved that the sequence {xn} defined by iterative method below with initial guess x0H chosen arbitrary:

xn+1=αnb+(IαnA)Txn,n0, $$\begin{array}{} \displaystyle x_{n+1}= \alpha_n b + (I- \alpha_nA)Tx_n,\,\, \,\, n\geq 0, \end{array}$$

converges strongly to the unique solution of the minimization problem (4), where T is a nonexpansive mapping in H and A a strongly positive bounded linear operator. Marino and Xu [10] extended Moudafi’s results [14] and Xu’s results [19] via the following general iteration x0H and

xn+1=αnγf(xn)+(IαnA)Txn,n0, $$\begin{array}{} \displaystyle x_{n+1}= \alpha_n \gamma f(x_n) + (I- \alpha_nA)Tx_n, \,\, n\geq 0, \end{array}$$

where {αn}n∈ℕ ⊂ (0, 1), A is bounded linear operator on H and T is a nonexpansive. Under suitable conditions, they proved the sequence {xn} defined by (6) converges strongly to xFix(T), which is the unique solution of the following variational inequality

Axγf(x),xp0,pFix(T). $$\begin{array}{} \displaystyle \langle A x^*-\gamma f( x^*) , x^*-p\rangle\leq 0,\,\,\,\, \forall p\in Fix(T). \end{array}$$

As far as we know, all the recent and important results regarding approximation of solutions to variational inequality problems over the set of fixed points of nonlinear operators in the literature have been done for monotone operators over the set of fixed points of nonexpansive mappings. Furthermore, it is well known that accretive operators is an extension of monotone operators in Banach spaces and the class of demicontractive mappings contains those of nonexpansive, quasi-nonexpansive and strictly pseudo-contractive mappings with nonempty fixed point sets as subclasses.Thus, it is natural to extend the known results on variational inequality problems over the set of fixed points of nonexpansive mappings to variational inequality problems involving accretive operators over the set of common fixed points of demicontractive and quasi-nonexpansive mappings. This leads to this important natural question.

Question 3

Can we construct an iterative method with a strongly accretive and Lipschitzian operator for solving a variational inequality problem with quasi-nonexpansive and demicontractive mappings in real Banach spaces?

Our aim in this paper is to answer the above question in the affirmative. Thus, we introduce an iterative algorithm for solving variational inequality problems involving accretive operators over the set of common fixed points of demicontractive and quasi-nonexpansive mappings in Banach spaces. The results obtained here extend and unify the result of Marino and Xu [10], Sow [18] and most of the recent results in this direction. Our technique of proof is of independent interest.

Preliminairies

Let E be a Banach space with norm ∥⋅∥ and dual E. Let φ : [0, +∞) → [0, ∞) be a strictly increasing continuous function such that φ(0) = 0 and φ(t) → +∞ as t → ∞. Such a function φ is called gauge. Associed to a gauge a duality map Jφ : E → 2E defined by:

Jφ(x):={xE:x,x=||x||φ(||x||),||x||=φ(||x||)}. $$\begin{array}{} \displaystyle J_{\varphi}(x):=\{ x^*\in E^{*}:\langle x, x^* \rangle =||x||\varphi(||x||),|| x^*||=\varphi(||x||)\}. \end{array}$$

If the gauge is defined by φ(t) = t, then the corresponding duality map is called the normalized duality map and is denoted by J. Hence the normalized duality map is given by

J(x):={xE:x,x=||x||2=||x||2},xE. $$\begin{array}{} \displaystyle J(x):=\{ x^*\in E^{*}:\langle x, x^*\rangle =||x||^2= || x^*||^2\}, \,\forall\,x\in E. \end{array}$$

Notice that

Jφ(x)=φ(||x||)||x||J(x),x0. $$\begin{array}{} \displaystyle J_{\varphi}(x)= \displaystyle\dfrac{\varphi(||x||)}{||x||}J(x),\,\, x\neq 0. \end{array}$$

Let E be a real normed space and let S := {xE : ∥x∥ = 1}. E is said to be smooth if

limt0+x+tyxt $$\begin{array}{} \displaystyle \lim\limits_{t\to 0^+}\frac{\|x+ty\| - \|x\|}{t} \end{array}$$

exists for each x, yS, (see e.g., [4] for more details on duality maps).

Remark 2

Note also that a duality mapping exists in each Banach space. We recall from [1] some of the examples of this mapping in lp, Lp, Wm,p-spaces, 1 < p < ∞.

lp:Jx=xlp2pylq, $\begin{array}{} \displaystyle l_p: \,\,Jx=\|x\|^{2-p}_{l_p}y\in l_q, \end{array}$ x = (x1, x2, ⋯, xn, ⋯), y = (x1|x1|p–2, x2|x2|p–2, ⋯, xn|xn|p–2, ⋯),

Lp:Ju=uLp2p|u|p2uLq, $\begin{array}{} \displaystyle L_p:\,\,Ju=\|u\|^{2-p}_{L_p}|u|^{p-2}u\in L_q, \end{array}$

Wm,p:Ju=uWm,p2p|αm|(1)|α|Dα(|Dαu|p2Dαu)Wm,q, $\begin{array}{} W^{m,p}: \,\,Ju=\|u\|^{2-p}_{W^{m,p}}\sum_{|\alpha\leq m|}(-1)^{|\alpha|}D^\alpha \Big ( |D^\alpha u|^{p-2}D^\alpha u\Big )\in W^{-m,q}, \end{array}$

where 1 < q < ∞ is such that 1/p + 1/q = 1.

Recall that a real Banach space E that has a weakly continuous duality map satisfies Opial’s property, (see, e.g., [18]).

In [6], Chidume extended the condition (2) to arbitrary real Banach spaces X. If X is q-uniformly smooth, then the condition (2) becomes

xTx,jq(xp)(1k)q12q1xTxq,xX,pFix(T). $$\begin{array}{} \displaystyle \langle x-T x, j_q (x-p)\rangle \geq \dfrac{ (1-k)^{q-1}}{2^{q-1}}\Vert x-Tx \Vert^q,\,\,\, x\in X,\,\,\, p \in Fix(T ). \end{array}$$

Let C be a nonempty subsets of real Banach space E. A mapping QC : EC is said to be sunny if

QC(QCx+t(xQCx))=QCx $$\begin{array}{} \displaystyle Q_C (Q_C x + t(x-Q_C x)) = Q_C x \end{array}$$

for each xE and t ≥ 0. A mapping QC : EC is said to be a retraction if QC x = x for each xC.

Lemma 4

[17] Let C and D be nonempty subsets of a real Banach space E with DC and QD : CD a retraction from C into D. Then QD is sunny and nonexpansive if and only if

zQDz,j(yQDz)0 $$\begin{array}{} \displaystyle \langle z-Q_D z, j(y-Q_D z)\rangle \leq 0 \end{array}$$

for all zC and yD.

It is noted that Lemma 4 still holds if the normalized duality map is replaced by the general duality map Jφ, where φ is gauge function.

Remark 3

If K is a nonempty closed convex subset of a Hilbert space H, then the nearest point projection PK from H to K is the sunny nonexpansive retraction.

Given a gauge φ and E be a smooth real Banach space. A mapping A : D(A) ⊂ EE is said to be accretive if for each x, yD(A),

AxAy,Jφ(xy)0. $$\begin{array}{} \displaystyle \big \langle Ax-Ay,J_{\varphi}(x-y)\big \rangle \geq0. \end{array}$$

A mapping A : D(A) ⊂ EE is is said to be k- strongly accretive if there exists k ∈ (0, 1) such that for each x, yD(A),

AxAy,Jφ(xy)kφ(||xy||)||xy||. $$\begin{array}{} \displaystyle \langle Ax-Ay,J_{\varphi}(x-y)\rangle \geq k\varphi(||x-y||)||x-y||. \end{array}$$

In a Hilbert space, the normalized duality map is the identity map. Hence, in Hilbert spaces, strongly monotonicity and strongly accretivity coincide.

Remark 4

If φ(t) = tq–1, q > 1, inequality (9) becomes

AxAy,Jq(xy)kxyq. $$\begin{array}{} \displaystyle \langle Ax-Ay,J_q(x-y)\rangle \geq k\|x-y\|^q. \end{array}$$

Lemma 5

[7] Let E be a Banach space satisfying Opial’s property, K be a closed convex subset of E, and T : KK be a nonexpansive mapping such that F(T) ≠ ∅. Then IT is demiclosed; that is,

{xn}K,xnxKand(IT)xnyimpliesthat(IT)x=y. $$\begin{array}{} \displaystyle \{x_n\}\subset K,\,\,x_n\rightharpoonup x\in K\,\,\, {and} \,\,\,(I-T)x_n\to y\,\,\,{implies ~~that}\,\, (I-T)x=y. \end{array}$$

Lemma 6

([9]). Assume that a Banach space E has a weakly continous duality mapping Jφ with jauge φ.

Φ(x+y)Φ(x)+y,Jφ(x+y) $$\begin{array}{} \displaystyle \varPhi( \lVert x+ y\rVert) \leq \varPhi(\lVert x\rVert)+ \langle y, J_\varphi(x+y)\rangle \end{array}$$

for all x, yE.

In particular, for all x, yE,

x+y2x2+2y,J(x+y). $$\begin{array}{} \displaystyle \lVert x+ y\rVert^2 \leq \lVert x\rVert^2+2\langle y, J(x+y)\rangle . \end{array}$$

Theorem 7

[5] Let q > 1 be a fixed real number and E be a smooth Banach space. Then the following statements are equivalent:

E is q-uniformly smooth.

There is a constant dq > 0 such that for all x, yE

x+yqxq+qy,Jq(x)+dqyq. $$\begin{array}{} \displaystyle \|x + y\|^{q} \leq \|x\|^{q} + q\langle y\:,\:J_{q}(x)\rangle + d_q\|y\|^{q}. \end{array}$$

There is a constant c1 > 0 such that

xy,Jq(x)Jq(y)c1xyq,x,yE. $$\begin{array}{} \displaystyle \langle x - y\:,\: J_{q}(x) - J_{q}(y)\rangle \: \leq c_{1}\|x - y\|^{q},\;\; ~\forall~ \: x,y \in E. \end{array}$$

Lemma 8

[20] Let E be a uniformly convex real Banach space. For arbitrary r > 0, let B(0)r := {xE : ||x|| ≤ r} and λ ∈ [0, 1]. Then there exists a continuous, strictly increasing and convex function

g:[0,2r]R+,g(0)=0, $$\begin{array}{} \displaystyle g: [0,2r] \rightarrow \mathbb{R}^{+},\; g(0) = 0, \end{array}$$

such that for all x, yB(0)r,

λx+(1λ)y2λx2+(1λ)y2(1λ)λg(xy). $$\begin{array}{} \displaystyle \| \lambda x + (1 - \lambda )y\|^{2} \leq \lambda \|x\|^{2} + (1 - \lambda) \|y\|^{2} - (1-\lambda)\lambda g(\|x - y\|). \end{array}$$

Lemma 9

[21] Assume that {an} is a sequence of nonnegative real numbers such that an+1 ≤ (1 – αn)an + αnσn + βn, n ≥ 0, where {αn}, {βn} and {σn} satisfy the conditions:

αn ⊂ (0, 1), n=0αn=, $\begin{array}{} \displaystyle \sum_{n=0}^\infty\alpha_n = \infty, \end{array}$

σn ∈ ℝ, lim supnσn0orn=0σnαn<, $\begin{array}{} \displaystyle \limsup_{n\rightarrow \infty}\,\sigma_n\leq 0~~ or ~~ \,\,\displaystyle \sum_{n=0}^\infty\arrowvert\sigma_n \alpha_n\arrowvert \lt \infty, \end{array}$

βn ≥ 0 for all n ≥ 0 with n=0βn<. $\begin{array}{} \displaystyle \sum_{n=0}^\infty\arrowvert \beta_n\arrowvert \lt \infty. \end{array}$ Then limnan=0. $\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}a_n=0. \end{array}$

Lemma 10

[13] Let tn be a sequence of real numbers that does not decrease at infinity in a sense that there exists a subsequence tni of tn such that tni such that tnitni+1 for all i ≥ 0. For sufficiently large numbers n ∈ ℕ, an integer sequence {τ(n)} is defined as follows:

τ(n)=max{kn:tktk+1}. $$\begin{array}{} \displaystyle \tau(n) = \max\lbrace k\leq n:\,\,t_k \leq t_{k+1} \rbrace. \end{array}$$

Then, τ(n) → ∞ as n → ∞ and

max{tτ(n),tn}tτ(n)+1. $$\begin{array}{} \displaystyle \max\lbrace t_{\tau(n)},\,\,\, t_{n} \rbrace\leq t_{\tau(n)+1} . \end{array}$$

Lemma 11

([12], Proposition 2.1). Assume K is a closed convex subset of a Hilbert space H. Let T : KK be a self-mapping of C. If T is a k-demicontractive mapping, then the fixed point set Fix(T) is closed and convex.

Lemma 12

[12] Let K be a nonempty closed convex subset of a real Hilbert space H and T : KK be a mapping.

If T is a k-strictly pseudo-contractive mapping, then T satisfies the Lipschitzian condition

TxTy1+k1kxy. $$\begin{array}{} \displaystyle \Vert Tx-Ty\Vert \leq \dfrac{1+k}{1-k}\Vert x-y\Vert. \end{array}$$

If T is a k-strictly pseudo-contractive mapping, then the mapping IT is demiclosed at 0.

Lemma 13

[18] Let q > 1 be a fixed real number and E be a q-uniformly smooth real Banach space with constant dq. Let K be a nonempty, closed convex subset of E and A : KE be a k-strongly accretive and L-Lipschitzian operator with k > 0, L > 0. Assume that 0<η<(kqdqLq)1q1andτ=η(kdqLqηq1q). $\begin{array}{} \displaystyle 0 \lt \eta \lt \Big(\dfrac{kq}{ d_qL{^q}}\Big)^{\frac{1}{q-1}}~~ and ~~\tau=\eta\Big(k-\dfrac{d_q L^q \eta^{q-1}}{q}\Big). \end{array}$ Then for each t (0,min{1,1τ}), $\begin{array}{} \displaystyle \Big(0, min\{1,\,\, \dfrac{1}{\tau}\}\Big), \end{array}$ we have

(ItηA)x(ItηA)y(1tτ)xy,x,yK. $$\begin{array}{} \displaystyle \| (I-t\eta A)x-(I-t\eta A)y\| \leq (1- t\tau) \| x-y\|,\,\, \forall\, x,y\in K. \end{array}$$

Main Results

In this section, we present our explicit iterative method for solving a variational inequality problem with quasi-nonexpansive and demicontractive mappings in a real Banach space.

Theorem 14

Let q > 1 be a fixed real number and E be a q-uniformly smooth and uniformly convex real Banach space having a weakly continuous duality map Jφ and f : EE be an b-Lipschitzian mapping with a constant b ≥ 0. Let A : EE be an μ-strongly accretive and L-Lipschitzian operator with 0<η<(μqdqLq)1q1 $\begin{array}{} \displaystyle 0 \lt \eta \lt \Big(\dfrac{\mu q}{d_qL^q}\Big)^{\frac{1}{q-1}} \end{array}$ and 0 ≤ γb < τ, where τ=η(μdqLqηq1q). $\begin{array}{} \displaystyle \tau=\eta\Big(\mu-\dfrac{d_q L^q \eta^{q-1}}{q}\Big). \end{array}$ Let T1 : EE be a k-demicontractive mapping and T2 : EE be a quasi-nonexpansive mapping such that Γ := Fix(T1) ∩ Fix(T2) ≠ ∅. Let {xn} be a sequence defined as follows:

x0E,zn=(1θn)xn+θnT1xn,yn=βnzn+(1βn)T2zn,xn+1=αnγf(xn)+(IηαnA)yn, $$\begin{array}{} \displaystyle \left \{ \begin{array}{lll} x_0\in E,\\ z_n= (1-\theta_n) x_n + \theta_n T_1x_n, \\\\ y_n= \beta_{n} z_n+ (1-\beta_n) T_2 z_n,\\\\ x_{n+1}= \alpha_n \gamma f(x_n) + (I- \eta \alpha_n A)y_n, \end{array} \right. \end{array}$$

with the conditions θn ∈ [a, b] ⊂ (0, π) where

π:=min{1,(qωq1dq)1q1},withω=1k2, $$\begin{array}{} \displaystyle \pi: = {\min}\Big \{1,\Big (\frac{q \omega^{q-1}}{d_q}\Big )^{\frac{1}{q-1}}\Big\} ,\,\,\, \textit{with}\,\,\, \omega= \dfrac{ 1-k}{2}, \end{array}$$

{αn}, {θn} and {βn} are the sequences such that:

limnαn=0,n=0αn=, $\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}\alpha_n=0,\,\, \, \displaystyle\sum_{n=0}^\infty \alpha_n= \infty, \end{array}$

limninfβn(1βn)>0. $\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}\inf\beta_n(1-\beta_n) \gt 0. \end{array}$ Assume that IT1 and IT2 are demiclosed at origin. Then, the sequence {xn} generated by (10) converges strongly to x ∈ Γ, which is the unique solution of the following variational inequality:

ηAxγf(x),Jφ(xp)0,pΓ. $$\begin{array}{} \displaystyle \langle \eta Ax^* -\gamma f(x^*), J_{\varphi}(x^*-p) \rangle\leq 0,\,\,\,\, \forall p\in \Gamma. \end{array}$$

Proof

From the choice of η and γ, properties of QΓ, (ηAγf) is strongly accretive, then the variational inequality (11) has a unique solution in Γ. Without loss of generality, we can assume αn(0,min{1,1τ}). $\begin{array}{} \displaystyle \alpha_n\in\Big(0, min\{1\,\, , \dfrac{1}{\tau}\}\Big). \end{array}$ In what follows, we denote x to be the unique solution of (11). Fixing p ∈ Γ. We prove that the sequence {xn} is bounded. Using (10), inequality (ii) of Theorem 7 and inequality (8), we can compute

znpq=(1θn)(xnp)+θn(T1xnp)q=(1θn)(xnp)+θn(T1xnxn)+θn(xnp)q=xnp+θn(T1xnxn)qxnpqqθnxnT1xn,Jq(xnp)+dqθn(T1xnxn)qxnpqqθnωq1xnT1xnq+dqθn(T1xnxn)q. $$\begin{array}{} \begin{split} \displaystyle \| z_{n}- p\|^q &=&\Big\| (1-\theta_n) (x_n-p) + \theta_n (T_1 x_n-p)\Big\|^q\\ \\ &=&\Big\| (1-\theta_n) (x_n-p) + \theta_n (T_1x_n-x_n) + \theta_n (x_n-p)\Big\|^q \\ \\\ &=&\Big\|x_n-p + \theta_n (T_1 x_n-x_n)\Big\|^q \\ \\ &\leq&\|x_n-p\|^q - q \theta_n \langle x_n-T_1x_n, J_q(x_n-p)\rangle + d_q\Big\| \theta_n (T_1x_n-x_n)\Big\|^q \\ \\ &\leq&\|x_n-p\|^q - q \theta_n \omega^{q-1}\|x_n-T_1x_n\|^q + d_q\Big\|\theta_n (T_1x_n-x_n)\Big\|^q. \end{split} \end{array}$$

By inequality (12), it then follows that:

znpqxnpqqθnωq1xnT1xnq+dqθnqT1xnxnq.=xnpqθn[qωq1dqθnq1]xnT1xnq. $$\begin{array}{} \begin{split} \displaystyle \Big \|z_{n}-p\Big \|^q &\leq&\Big \|x_n-p\Big \|^q - q \theta_n \omega^{q-1}\Big \|x_n-T_1x_n\Big \|^q + d_q \theta_n^q\Big \|T_1x_n-x_n\Big \|^q. \\ &=& \Big \|x_n-p\Big \|^q -\theta_n \Big [q \omega^{q-1}-d_q \theta_n^{q-1}\Big ]\Big \|x_n-T_1x_n\Big \|^q. \end{split} \end{array}$$

Since qωq1dqθnq1>0, $\begin{array}{} \displaystyle q\omega^{q-1}-d_q \theta_n^{q-1} \gt 0, \end{array}$ we obtain

znpxnp. $$\begin{array}{} \displaystyle \|z_n-p\Big \|\leq \|x_{n}-p\Big \|. \end{array}$$

From (10) and T2 is quasi-nonexpansive, it follows that

ynp=βnzn+(1βn)T2znpβnznp+(1βn)T2znpznp. $$\begin{array}{} \begin{split} \displaystyle \Vert y_n-p \Vert &=&\Vert \beta_{n} z_n+ (1-\beta_{n}) T_2z_n -p\Vert\\ & \leq & \beta_{n} \Vert z_n-p\Vert+ (1-\beta_{n}) \Vert T_2z_n -p \Vert\\ & \leq & \Vert z_n-p\Vert. \end{split} \end{array}$$

Therefore, we have

ynpznpxnp. $$\begin{array}{} \displaystyle \Vert y_n-p \Vert \leq \Vert z_n-p \Vert \leq \Vert x_n-p \Vert. \end{array}$$

By Lemma 13, inequalities (15) and (14), we have

xn+1p=αnγf(xn)+(IηαnA)ynpαnγf(xn)f(p)+(1ταn)ynp+αnγf(p)ηAp(1αn(τbγ))xnp+αnγf(p)ηApmax{xnp,γf(p)ηApτbγ}. $$\begin{array}{} \begin{split} \displaystyle \lVert x_{n+1}-p\rVert &=& \lVert \alpha_n \gamma f(x_n)+ (I-\eta \alpha_n A) y_n -p\rVert\\ &\leq& \alpha_n \gamma \lVert f(x_n) -f(p)\rVert + (1-\tau\alpha_n) \lVert y_n -p\rVert + \alpha_n\lVert \gamma f(p)- \eta Ap\rVert \\ &\leq&(1-\alpha_n(\tau- b\gamma ))\lVert x_n-p\rVert+\alpha_n\lVert \gamma f(p)- \eta Ap\rVert\\ &\leq& \max{\{\lVert x_n - p\|,\dfrac{\lVert \gamma f(p)- \eta A p \|}{\tau- b\gamma}\}}. \end{split} \end{array}$$

By induction, it is easy to see that

xnpmax{x0p,γf(p)ηApτbγ},n1. $$\begin{array}{} \displaystyle \lVert x_{n}-p\rVert \leq \max{\{\lVert x_0 - p\|,\dfrac{\lVert \gamma f(p)- \eta A p \|}{\tau- b\gamma}\}}, \,\,\,\, n \geq 1. \end{array}$$

Hence, {xn} is bounded also are {f(xn)}, and {Axn}.

Thus we have

xn+1pq=αnγf(xn)+(IηαnA)ynpqynp+αnγf(xn)αnηAynqynpqqαnηAynγf(xn),Jq(ynp)+dqαnγf(xn)+αnηAynqynpq+qαnηAynγf(xn)ynpq1+dqαnγf(xn)αnηAynqxnpqθn[qωq1dqθnq1]xnT1xnq+qαnηAynγf(xn)ynpq1+dqαnγf(xn)αnηAynq. $$\begin{array}{} \begin{split} \displaystyle \lVert x_{n+1}-p\rVert^q &= & \lVert \alpha_n \gamma f(x_n)+ ( I-\eta \alpha_n A)y_n -p\rVert^q\\ &\leq& \lVert y_n -p + \alpha_n \gamma f(x_n)- \alpha_n\eta Ay_n \rVert^q\\ &\leq& \| y_n -p \|^q - q \alpha_n\langle \eta Ay_n-\gamma f(x_n), J_q( y_n -p) \rangle + d_q\Big\|\alpha_n \gamma f(x_n)+\alpha_n\eta Ay_n \Big\|^q\\ &\leq & \lVert y_n-p\rVert^q + q \alpha_n \lVert \eta Ay_n -\gamma f(x_n)\rVert\lVert y_n-p\rVert^{q-1}+ d_q\Big\|\alpha_n \gamma f(x_n)-\alpha_n\eta Ay_n \Big\|^q\\ \\ &\leq&\Big \|x_n-p\Big \|^q -\theta_n \Big [q \omega^{q-1}-d_q \theta_n^{q-1}\Big ]\Big \|x_n-T_1 x_n\Big \|^q + q \alpha_n\lVert \eta Ay_n -\gamma f(x_n)\rVert\lVert y_n-p\rVert^{q-1}\\&&+ d_q\Big\|\alpha_n \gamma f(x_n)-\alpha_n\eta Ay_n \Big\|^q. \end{split} \end{array}$$

Since {xn} and {yn} are bounded, then there exists a constant C > 0 such that

θn[qωq1dqθnq1]xnT1xnqxnpqxn+1pq+αnC. $$\begin{array}{} \displaystyle \theta_n \Big [q \omega^{q-1}-d_q\theta_n^{q-1}\Big ] \|x_n-T_1 x_n \|^q \leq \Big \|x_n-p\Big \|^q -\lVert x_{n+1}-p\rVert^q + \alpha_n C. \end{array}$$

We show that the sequence {xn} converges strongly to a point x. Now we divide the rest of the proof into two cases. Case 1. Assume that the sequence {∥xnp∥} is monotonically decreasing. Then {∥xnp∥} is convergent. Clearly, we have

limn[xnpxn+1p]=0. $$\begin{array}{} \displaystyle \lim_{n\rightarrow \infty} \Big[ \lVert x_{n}-p \rVert-\lVert x_{n+1}-p\rVert\Big]= 0. \end{array}$$

It then implies from (16) that

limnθn[qωq1qdqθnq1]xnT1xnq=0. $$\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}\theta_n \Big [q \omega^{q-1}- qd_q\theta_n^{q-1}\Big ]\Big \|x_n- T_1x_n\Big \|^q =0. \end{array}$$

Since θn ∈ [a, b] ⊂ (0, π) and qωq1dqθnq1>0, $\begin{array}{} \displaystyle q \omega^{q-1}-d_q\theta_n^{q-1} \gt 0, \end{array}$ we have

limnxnT1xn=0. $$\begin{array}{} \displaystyle \lim_{n\rightarrow \infty} \|x_n- T_1x_n \|=0. \end{array}$$

Now, we observe that,

znxn=(1θn)xn+θnT1xnxn=(1θn)xn+θnT1xnθnxn(1θn)xn=θnT1xnxn. $$\begin{array}{} \begin{split} \displaystyle \Vert z_n-x_n\Vert &= & \Vert (1-\theta_n) x_n + \theta_n T_1x_n-x_n\Vert\\ &= & \Vert (1-\theta_n) x_n + \theta_n T_1 x_n- \theta_n x_n- (1-\theta_n) x_n\Vert\\ & =& \theta_n \Vert T_1 x_n- x_n\Vert. \end{split} \end{array}$$

Therefore, from (19) we have

limnznxn=0. $$\begin{array}{} \displaystyle \lim_{n\rightarrow \infty} \| z_n-x_n \|=0. \end{array}$$

We show that lim supn+ $\begin{array}{} \displaystyle \limsup_{n\to +\infty} \end{array}$ηAxγf(x), Jφ(xxn)〉 ≤ 0. First, we note that there exists a subsequence {xnj} of {xn} such that xnj converges weakly to a in E and

lim supn+ηAxγf(x),Jφ(xxn)=limj+ηAxγf(x),Jφ(xxnj). $$\begin{array}{} \displaystyle \limsup_{n\to +\infty}\langle \eta Ax^*-\gamma f(x^*), J_{\varphi}(x^*-x_n)\rangle=\displaystyle\lim_{j\to +\infty}\langle \eta Ax^*-\gamma f(x^*), J_{\varphi}(x^*-x_{n_{j}})\rangle. \end{array}$$

Since {xnj} is bounded, there exists a subsequence {xnji} of {xnj} which converges weakly to a. Without loss of generality, we can assume that {xnj} converges weakly to the point a. From (19) and IT1 is demiclosed, we obtain aFix(T1). From Lemma 8, the fact that T2 is quasi-nonexpansive and (15), we have

ynp2=βnzn+(1βn)T2znp2=βnznp2+(1βn)T2znp2(1βn)βng(T2znzn)xnp2(1βn)βng(T2znzn). $$\begin{array}{} \begin{split} \displaystyle \Vert y_{n}-p\Vert^2&=&\Vert \beta_{n} z_n+ (1-\beta_{n}) T_2z_n-p \Vert^2\\ &=&\beta_{n}\Vert z_n-p \Vert^2+(1-\beta_{n}) \Vert T_2z_n-p \Vert^2 - (1-\beta_{n})\beta_{n} g(\Vert T_2z_n - z_n\Vert)\\ &\leq& \Vert x_n-p \Vert^2-(1-\beta_{n})\beta_{n} g(\Vert T_2z_n - z_n\Vert) . \end{split} \end{array}$$

Hence,

xn+1p2αnγf(xn)+(IηαnA)ynp2(IαnηA)(ynp)αn(ηApγf(xn))2αn2ηApγf(xn)2+(1αnτ)2ynp2+2αn(1αnτ)ηApγf(xn)ynpαn2ηApγf(xn)2+(1αnτ)2xnp2(1αnτ)2(1βn)βng(T2znzn)+2αn(1αnτ)ηApγf(xn)xnp. $$\begin{array}{} \begin{split} \displaystyle \Vert x_{n+1}-p\Vert^2 &\leq & \Vert \alpha_n \gamma f(x_n) + (I- \eta \alpha_n A)y_n -p\Vert^2\\ &\leq& \Vert (I-\alpha_n \eta A )( y_n -p)-\alpha_n (\eta Ap-\gamma f(x_n))\Vert^2\\ &\leq& \alpha_n^2 \Vert \eta Ap-\gamma f(x_n) \Vert^2 + (1-\alpha_n\tau)^2 \Vert y_n -p\Vert^2+2 \alpha_n(1-\alpha_n\tau)\Vert \eta Ap-\gamma f(x_n) \Vert\Vert y_n -p\Vert\\ &\leq& \alpha_n^2 \Vert \eta Ap-\gamma f(x_n) \Vert^2 + (1-\alpha_n\tau)^2\Vert x_n-p \Vert^2-(1-\alpha_n\tau)^2 (1-\beta_{n})\beta_{n} g(\Vert T_2z_n - z_n\Vert) \\ &&+2 \alpha_n(1-\alpha_n\tau )\Vert \eta Ap-\gamma f(x_n) \Vert\Vert x_n -p\Vert. \end{split} \end{array}$$

Thus, we get

(1αnτ)2βn(1βn)g(T2znzn)xnp2xn+1p2+αn2ηApγf(xn)2+2αn(1αnτ)ηApγf(xn)xnp. $$\begin{array}{} \begin{split} \displaystyle (1-\alpha_n\tau)^2\beta_{n} (1-\beta_{n}) g(\Vert T_2z_n - z_n\Vert) \leq \Vert x_{n}-p \Vert^2-\Vert x_{n+1}-p\Vert^2+\alpha_n^2 \Vert \eta Ap-\gamma f(x_n) \Vert^2 \\ +2 \alpha_n(1-\alpha_n\tau)\Vert \eta Ap-\gamma f(x_n) \Vert\Vert x_n -p\Vert. \end{split} \end{array}$$

Since {xn} is bounded, then there exists a constant B > 0 sucht that

(1αnτ)2βn(1βn)g(T2znzn)xnp2xn+1p2+αnB. $$\begin{array}{} \displaystyle (1-\alpha_n\tau)^2\beta_{n} (1-\beta_{n}) g(\Vert T_2z_n - z_n\Vert) \leq \Vert x_{n}-p \Vert^2-\Vert x_{n+1}-p\Vert^2+\alpha_nB. \end{array}$$

Thus we have

limnβn(1βn)g(T2znzn)=0. $$\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}\beta_{n} (1-\beta_{n}) g(\Vert T_2z_n - z_n\Vert) =0. \end{array}$$

Since limn→∞ inf(1 – βn)βn > 0 and property of g, we have

limnT2znzn=0. $$\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}\Vert T_2z_n - z_n\Vert =0. \end{array}$$

Since znja, it follows from (24) and IT2 is demiclosed that aFix(T2). Therefore, a ∈ Γ. On the other hand, by using x solves (11) and the assumption that the duality mapping Jφ is weakly continuous, we have,

lim supn+ηAxγf(x),Jφ(xxn)=limj+ηAxγf(x),Jφ(xxnj)=ηAxγf(x),Jφ(xa)0. $$\begin{array}{} \begin{split} \displaystyle \limsup_{n\to +\infty}\langle \eta Ax^{*}-\gamma f(x^*) , J_{\varphi}(x^*-x_n)\rangle &=&\displaystyle\lim_{j\to +\infty}\langle \eta Ax^{*}-\gamma f(x^*), J_{\varphi}(x^*-x_{n_{j}})\rangle\\ &=&\langle \eta Ax^{*}-\gamma f(x^*), J_{\varphi}(x^*-a)\rangle\leq 0. \end{split} \end{array}$$

Finally, we show that xnx. In fact, since Φ(t) = 0t $\begin{array}{} \int_ {0}^{t} \end{array}$ φ(σ), ∀t ≥ 0, and φ is a gauge function, then for 1 ≥ k ≥ 0, Φ(kt) ≤ kΦ(t). From (10), Lemmas 6 and 13, observe that

Φ(xn+1x)=Φ(αnγf(xn)+(IηαnA)ynx)Φ(αnγf(xn)+(IηαnA)ynx)Φ(αn(γf(xn)γf(x)+(IαnηA)(ynx))+αnηAxγf(x),Jφ(xxn+1)Φ(αnγf(xn)f(x)+(IαnηA)(ynx))+αnηAxγf(x),Jφ(xxn+1)Φ(αnbγxnx+(1αnτ)ynx)+αnηAxγf(x),Jφ(xxn+1)Φ((1αn(τbγ))xnx)+αnηAxγf(x),Jφ(xxn+1)(1αn(τbγ))Φ(xnx)+αnηAxγf(x),Jφ(xxn+1). $$\begin{array}{} \begin{split} \displaystyle \Phi(\| x_{n+1}-x^*\|)&=&\Phi(\| \alpha_n \gamma f(x_n)+ (I-\eta \alpha_n A) y_n -x^* \|)\\ &\leq& \Phi(\| \alpha_n \gamma f(x_n)+ (I-\eta \alpha_n A) y_n -x^* \|)\\ & \leq& \Phi(\| \alpha_n (\gamma f( x_n)-\gamma f(x^*) + (I-\alpha_n \eta A)( y_{n}-x^*)\|) + \alpha_n \langle \eta Ax^*-\gamma f(x^*), J_{\varphi}(x^*-x_{n+1})\rangle\\ & \leq& \Phi( \alpha_n \gamma \| f( x_n)-f(x^*)\| + \| (I-\alpha_n \eta A)( y_{n}-x^*)\|)+ \alpha_n \langle \eta Ax^*-\gamma f(x^*), J_{\varphi}(x^*-x_{n+1})\rangle\\ & \leq& \Phi( \alpha_n b \gamma \| x_n-x^*\| + (1-\alpha_n \tau) \| y_{n}-x^*\|) + \alpha_n \langle \eta Ax^*-\gamma f(x^*), J_{\varphi}(x^*-x_{n+1})\rangle\\ & \leq& \Phi( (1-\alpha_n(\tau- b\gamma)) \| x_n-x^*\|)+ \alpha_n \langle \eta Ax^*-\gamma f(x^*), J_{\varphi}(x^*-x_{n+1})\rangle\\ & \leq& ( 1-\alpha_n(\tau- b\gamma)) \Phi( \| x_n-x^*\|)+ \alpha_n \langle \eta Ax^*-\gamma f(x^*), J_{\varphi}(x^*-x_{n+1})\rangle. \end{split} \end{array}$$

Hence, by Lemma 9, we conclude that the sequence {xn} converge strongly to the point x ∈ Γ.

Case 2. Assume that the sequence {∥xnx∥} is not monotonically decreasing. Set Bn = ∥ xnx∥ and τ : ℕ → ℕ be a mapping for all nn0 (for some n0 large enough) by τ(n) = max{k ∈ ℕ : kn, BkBk+1}. Obviously, {τ(n)} is a non-decreasing sequence such that τ(n) → ∞ as n → ∞ and Bτ(n)Bτ(n)+1 for nn0. From (16), we have

θτ(n)[qωq1dqθτ(n)q1]xτ(n)T1xτ(n)qατ(n)C. $$\begin{array}{} \displaystyle \theta_{\tau(n)} \Big [q \omega^{q-1}-d_q \theta_{\tau(n)}^{q-1}\Big ]\Big \|x_ {\tau(n)}- T_1 x_{\tau(n)} \Big \|^q \leq \alpha_{\tau(n)} C. \end{array}$$

Furthermore, we have

limnθτ(n)[qωq1dqθτ(n)q1]xτ(n)T1xτ(n)q=0. $$\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}\theta_{\tau(n)} \Big [q \omega^{q-1}-d_q \theta_{\tau(n)}^{q-1}\Big ]\Big \|x_{\tau(n)}- T_1 x_{\tau(n)} \Big \|^q =0. \end{array}$$

Since qωq1dqθτ(n)q1>0 $\begin{array}{} \displaystyle q\omega^{q-1}-d_q \theta_{\tau(n)}^{q-1} \gt 0 \end{array}$ and property of π, we have

limnxτ(n)T1xτ(n)=0. $$\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}\Big \|x_{\tau(n)}- T_1 x_{\tau(n)} \Big \|=0. \end{array}$$

By same argument as in case 1, we can show that xτ(n) and yτ(n) are bounded in E and lim supτ(n)+ $\begin{array}{} \displaystyle \limsup_{\tau(n)\to +\infty} \end{array}$ηAxγf(x), Jφ(xxτ(n))〉 ≤ 0. We have for all nn0,

0Φ(xτ(n)+1x)Φ(xτ(n)x)ατ(n)[(τbγ)Φ(xτ(n)x)+ηAxγf(x),Jφ(xxτ(n)+1)], $$\begin{array}{} \displaystyle 0\leq \Phi(\lVert x_{\tau(n)+1}-x^* \rVert)-\Phi(\lVert x_{\tau(n)}-x^* \rVert)\leq \alpha_{\tau(n)}[- (\tau- b\gamma)\Phi(\lVert x_{\tau(n)}-x^* \rVert) +\langle \eta Ax^*-\gamma f(x^*) ,J_{\varphi}(x^*-x_{\tau(n)+1})\rangle], \end{array}$$

which implies that

Φ(xτ(n)x)1τbγηAxγf(x),Jφ(xxτ(n)+1). $$\begin{array}{} \displaystyle \Phi(\lVert x_{\tau(n)}-x^* \rVert) \leq \dfrac{ 1}{\tau- b\gamma } \langle \eta Ax^*-\gamma f(x^*) ,J_{\varphi}(x^*- x_{\tau(n)+1})\rangle. \end{array}$$

Then, we have

limnΦ(xτ(n)x)=0. $$\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}\Phi(\lVert x_{\tau(n)}-x^* \rVert) =0. \end{array}$$

Therefore,

limnBτ(n)=limnBτ(n)+1=0. $$\begin{array}{} \displaystyle \lim_{n\rightarrow \infty} B_{\tau(n)}=\displaystyle\lim_{n\rightarrow \infty} B_{\tau(n)+1}=0. \end{array}$$

Thus, by Lemma 10, we conclude that

0Bnmax{Bτ(n),Bτ(n)+1}=Bτ(n)+1. $$\begin{array}{} \displaystyle 0\leq B_n\leq \max\lbrace B_{\tau(n)},\,\,B_{\tau(n)+1}\rbrace=B_{\tau(n)+1}. \end{array}$$

Hence, limn $\begin{array}{} \displaystyle \lim_{n\rightarrow \infty} \end{array}$ Bn = 0, that is {xn} converges strongly to x. This completes the proof.□

We now apply Theorem 14 for solving variational inequality problems over the set of common fixed points of two nonexpansive mappings. In that case the demiclosedness assumption is not necessary.

Theorem 15

Let q > 1 be a fixed real number and E be a q-uniformly smooth and uniformly convex real Banach space having a weakly continuous duality map and f : EE be an b-Lipschitzian mapping with a constant b ≥ 0. Let A : EE be an μ-strongly accretive and L-Lipschitzian operator with 0<η<(μqdqLq)1q1 $\begin{array}{} \displaystyle 0 \lt \eta \lt \Big(\dfrac{\mu q}{d_qL^q}\Big)^{\frac{1}{q-1}} \end{array}$ and 0 ≤ γb < τ, where τ=η(μdqLqηq1q). $\begin{array}{} \displaystyle \tau=\eta\Big(\mu-\dfrac{d_q L^q \eta^{q-1}}{q}\Big). \end{array}$ Let T1 : EE and T2 : EE two nonexpansive mappings such that Γ := Fix(T1) ∩ Fix(T2) ≠ ∅. Let {xn} be a sequence defined as follows:

x0E,zn=(1θn)xn+θnT1xn,yn=βnzn+(1βn)T2zn,xn+1=αnγf(xn)+(IηαnA)yn, $$\begin{array}{} \displaystyle \left \{ \begin{array}{lll} x_0\in E,\\ z_n= (1-\theta_n) x_n + \theta_n T_1x_n, \\\\ y_n= \beta_{n} z_n+ (1-\beta_n) T_2 z_n,\\\\ x_{n+1}= \alpha_n \gamma f(x_n) + (I- \eta \alpha_n A)y_n, \end{array} \right. \end{array}$$

with the conditions θn ∈ [a, b] ⊂ (0, π) where

π:=min{1,(q2q1dq)1q1}, $$\begin{array}{} \displaystyle \pi: = {\min}\Big \{1,\Big (\frac{q }{2^{q-1} d_q}\Big )^{\frac{1}{q-1}}\Big\}, \end{array}$$

{αn}, {θn} and {βn} are the sequences such that:

limnαn=0,n=0αn=, $\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}\alpha_n=0,\,\, \, \displaystyle\sum_{n=0}^\infty \alpha_n= \infty, \end{array}$

limninfβn(1βn)>0. $\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}\inf\beta_n(1-\beta_n) \gt 0. \end{array}$ Then, the sequence {xn} generated by (26) converges strongly to x ∈ Γ, which is the unique solution of the following variational inequality:

ηAxγf(x),Jφ(xp)0,pΓ. $$\begin{array}{} \displaystyle \langle \eta Ax^* -\gamma f(x^*), J_{\varphi}(x^*-p) \rangle\leq 0,\,\,\,\, \forall p\in \Gamma. \end{array}$$

Proof

Since every nonexpansive mapping is quasi-nonexpansive and 0-demicontractive. The proof follows Lemma 5 and Theorem 14.□

We now apply Theorem 14 for solving fixed point problems with demicontractive and quasi-nonexpansive mappings in E = lq, 1 < q < ∞.

Theorem 16

Assume that E = lq, 1 < q < ∞ and f : EE be an b-Lipschitzian mapping with a constant b ≥ 0. Let A : EE be an μ-strongly accretive and L-Lipschitzian operator with 0<η<(μqdqLq)1q1 $\begin{array}{} \displaystyle 0 \lt \eta \lt \Big(\dfrac{\mu q}{d_qL^q}\Big)^{\frac{1}{q-1}} \end{array}$ and 0 ≤ γb < τ, where τ=η(μdqLqηq1q). $\begin{array}{} \displaystyle \tau=\eta\Big(\mu-\dfrac{d_q L^q \eta^{q-1}}{q}\Big). \end{array}$ Let T1 : EE be a k-demicontractive mapping and T2 : EE be a quasi-nonexpansive mapping such that Γ := Fix(T1) ∩ Fix(T2) ≠ ∅. Let {xn} be a sequence defined as follows:

x0E,zn=(1θn)xn+θnT1xn,yn=βnzn+(1βn)T2zn,xn+1=αnγf(xn)+(IηαnA)yn, $$\begin{array}{} \displaystyle \left \{ \begin{array}{lll} x_0\in E,\\ z_n= (1-\theta_n) x_n + \theta_n T_1x_n, \\\\ y_n= \beta_{n} z_n+ (1-\beta_n) T_2 z_n,\\\\ x_{n+1}= \alpha_n \gamma f(x_n) + (I- \eta \alpha_n A)y_n, \end{array} \right. \end{array}$$

with the conditions θn ∈ [a, b] ⊂ (0, π) where

π:=min{1,(qωq1dq)1q1},withω=1k2, $$\begin{array}{} \displaystyle \pi: = {\min}\Big \{1,\Big (\frac{q \omega^{q-1}}{d_q}\Big )^{\frac{1}{q-1}}\Big\} ,\,\,\, \textit{with}\,\,\, \omega= \dfrac{ 1-k}{2}, \end{array}$$

{αn}, {θn} and {βn} are the sequences such that:

limnαn=0,n=0αn=, $\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}\alpha_n=0,\,\, \, \displaystyle\sum_{n=0}^\infty \alpha_n= \infty, \end{array}$

limninfβn(1βn)>0. $\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}\inf\beta_n(1-\beta_n) \gt 0. \end{array}$ Assume that IT1 and IT2 are demiclosed at origin. Then, the sequence {xn} generated by (28) converges strongly to x ∈ Γ, which is the unique solution of the following variational inequality:

ηAxγf(x),Jφ(xp)0,pΓ. $$\begin{array}{} \displaystyle \langle \eta Ax^* -\gamma f(x^*), J_{\varphi}(x^*-p) \rangle\leq 0,\,\,\,\, \forall p\in \Gamma. \end{array}$$

Remark 5

Theorem 14 extends and generalizes the main result of Moudafi [14], Xu [19], Marino and Xu [10], Sow [18] and most of the recent results in this direction. In the following ways:

From a real Hilbert space to a real q-uniformly smooth and uniformly convex Banach space which admits a weakly sequentially continuous generalized duality mapping.

From nonexpensive mappings to a class of demicontractive and quasi-nonexpansive mapping.

Application to constrained optimization problems

Convex optimization theory is a powerful tool for solving many practical problems in operational research. In particular, it has been widely used to solve practical minimization problems over complicated constraints [3, 16], e.g., convex optimization problems with a fixed point constraint and with a variational inequality constraint. Consider the following constrained optimization problem: let H be a real Hilbert space and T1 : HH be a k-demicontractive mapping and T2 : HH be a quasi-nonexpansive mapping such that Γ := Fix(T1) ∩ Fix(T2) ≠ ∅. Given a convex objective function g : H → ℝ, the problem can be expressed as

Problem 17

Minimizeg(x)subjecttoxΓ. $$\begin{array}{} \displaystyle {Minimize} \,\, g(x)\\\\ {subject~ to}\,\, x\in \Gamma . \end{array}$$

The set of solutions of (17) is denoted by Sol(g).

Definition 1

Let H be a real Hilbert space. A function g : H → ℝ is said to be α-strongly convex if there exists α > 0 such that for every x, yH with xy and β ∈ (0, 1), the following inequality holds:

g(βx+(1β)y)βg(x)+(1β)g(y)αxy2. $$\begin{array}{} \displaystyle g(\beta x+ (1-\beta) y)\leq \beta g(x)+ (1-\beta)g(y)-\alpha\|x-y\|^2. \end{array}$$

Lemma 18

Let H be a real Hilbert space and g : H → ℝ a real-valued differentiable convex function. Assume that g is strongly convex. Then the differential mapg : HH is strongly monotone, i.e., there exists a positive constant μ such that

g(x)g(y),xyμxy2x,yH. $$\begin{array}{} \displaystyle \langle \nabla g(x)- \nabla g(y),x-y\rangle \geq \mu\|x-y\|^2\,\,\forall\,x,y\in H. \end{array}$$

Lemma 19

Let K be a nonempty, closed convex subset of E be normed linear space and let g : K → ℝ a real valued differentiable convex function. Then x is a minimizer of g over K if and only if x solves the following variational inequality 〈∇ g(x), yx〉 ≥ 0 for all yK.

Remark 6

By Lemma 19, xSol(g) if and only if x solves the following variational inequality problem:

g(x),xp0,pΓ. $$\begin{array}{} \displaystyle \langle \nabla g (x^*), x^*-p \rangle \leq 0,\,\, \forall p \in \Gamma. \end{array}$$

Hence, one has the following result.

Theorem 20

Let H be a real Hilbert space and g : H → ℝ be a differentiable, strongly convex real-valued function with L-Lipschitz contin-uous gradientg. Let T1 : HH be a k-demicontractive mapping and T2 : HH be a quasi-nonexpansive mapping such that Fix(T1) ∩ Fix(T2) ≠ ∅. Assume that 0 < η < 2μL2 $\begin{array}{} \displaystyle \dfrac{2\mu}{ L^2} \end{array}$, IT1 and IT2 are demiclosed at origin. Let {xn} be a sequence defined as follows:

x0H,zn=(1θn)xn+θnT1xn,yn=βnzn+(1βn)T2zn,xn+1=(Iηαng)yn, $$\begin{array}{} \displaystyle \left \{ \begin{array}{lll} x_0\in H,\\ z_n= (1-\theta_n) x_n + \theta_n T_1x_n, \\\\ y_n= \beta_{n} z_n+ (1-\beta_n) T_2 z_n,\\\\ x_{n+1}= (I- \eta \alpha_n \nabla g)y_n, \end{array} \right. \end{array}$$

with the conditions

{αn}, {θn} and {βn} are the sequences such that:

limnαn=0,n=0αn=, $\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}\alpha_n=0,\,\, \, \displaystyle\sum_{n=0}^\infty \alpha_n= \infty, \end{array}$

θn ∈ [a, b] ⊂ (0, k) and limninfβn(1βn)>0. $\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}\inf\beta_n(1-\beta_n) \gt 0. \end{array}$

Then, the sequence {xn} generated by (34) converges strongly to a solution of Problem 17.

Proof

The proof follows Theorem 14 with f = 0.□

Now, we consider the following quadratic optimization problem:

minxΓg(x):=12Ax,x, $$\begin{array}{} \displaystyle \min_{x\in \Gamma}\,g(x):= \dfrac{1}{2}\langle Ax, x \rangle, \end{array}$$

where A : HH be a strongly positive bounded linear operator.

Applying Theorem 20, we obtain the following result.

Theorem 21

Let H be a real Hilbert space and A : HH be strongly bounded linear operator with coefficient μ > 0. Let T1 : HH be a k-demicontractive mapping and T2 : HH be a quasi-nonexpansive mapping such that Γ := Fix(T1) ∩ Fix(T2) ≠ ∅. Assume that 0 < η < 2μA2 $\begin{array}{} \displaystyle \dfrac{2\mu}{ \| A\|^2} \end{array}$ and IT1 and IT2 are demiclosed at origin. Let {xn} be a sequence defined as follows:

x0H,zn=(1θn)xn+θnT1xn,yn=βnzn+(1βn)T2zn,xn+1=(IηαnA)yn, $$\begin{array}{} \displaystyle \left \{ \begin{array}{lll} x_0\in H,\\ z_n= (1-\theta_n) x_n + \theta_n T_1x_n, \\\\ y_n= \beta_{n} z_n+ (1-\beta_n) T_2 z_n,\\\\ x_{n+1}= (I- \eta \alpha_n A)y_n, \end{array} \right. \end{array}$$

with the conditions

{αn}, {θn} and {βn} are the sequences such that:

limnαn=0,n=0αn=, $\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}\alpha_n=0,\,\, \, \displaystyle\sum_{n=0}^\infty \alpha_n= \infty, \end{array}$

θn ∈ [a, b] ⊂ (0, k) and limninfβn(1βn)>0. $\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}\inf\beta_n(1-\beta_n) \gt 0. \end{array}$

Then, the sequence {xn} generated by (36) converges strongly to a solution of (35).

Proof

The proof follows Remark 4 and Theorem 20.□

Finally, we consider the regularized minimization problem:

minxΓgα(x):=g(x)+α2x2. $$\begin{array}{} \displaystyle \min_{x\in \Gamma}\,g_{\alpha}(x):= g(x)+\dfrac{\alpha}{2}\Vert x\Vert^2. \end{array}$$

Here, α > 0 is the regularization parameter, g be a convex real-valued function with L-Lipschitz continuous gradient ∇g. We can see that the gradient ∇gα = ∇g + αI is (L + α)-Lipschitzian and α-strongly monotone.

Applying Theorem 20, we obtain the following result.

Theorem 22

Let H be a real Hilbert space and g be a convex real-valued function with L-Lipschitz continuous gradientg. Let T1 : HH be a k-demicontractive mapping and T2 : HH be a quasi-nonexpansive mapping such that Γ := Fix(T1) ∩ Fix(T2) ≠ ∅. Assume that 0 < η < 2α(L+α)2, $\begin{array}{} \displaystyle \dfrac{2\alpha}{{(L+\alpha)}^2}, \end{array}$ IT1 and IT2 are demiclosed at origin. Let {xn} be a sequence defined as follows:

x0H,zn=(1θn)xn+θnT1xn,yn=βnzn+(1βn)T2zn,xn+1=(Iηαngα)yn, $$\begin{array}{} \displaystyle \left \{ \begin{array}{lll} x_0\in H,\\ z_n= (1-\theta_n) x_n + \theta_n T_1x_n, \\\\ y_n= \beta_{n} z_n+ (1-\beta_n) T_2 z_n,\\\\ x_{n+1}= (I- \eta \alpha_n \nabla g_{\alpha})y_n, \end{array} \right. \end{array}$$

with the conditions

{αn}, {θn} and {βn} are the sequences such that:

limnαn=0,n=0αn=, $\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}\alpha_n=0,\,\, \, \displaystyle\sum_{n=0}^\infty \alpha_n= \infty, \end{array}$

θn ∈ [a, b] ⊂ (0, k) and limninfβn(1βn)>0. $\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}\inf\beta_n(1-\beta_n) \gt 0. \end{array}$

Then, the sequence {xn} generated by (38) converges strongly to a solution of (37).

Conclusion

In this work, we introduce and analyze a new iterative method based on a general iterative method with strongly accretive operator for approximating a common fixed points of quasi-nonexpansive and demicontractive mappings which is also the solution of some variational inequality problems in real Banach spaces. Our results are used to solve some constrained optimization problems. The class of demicontractive mappings contains those of quasi-nonexpansive, strictly pseudo-contractive and nonexpansive mappings as subclasses. The results obtained here extend and unify the result of Moudafi [14], Xu [19], Marino and Xu [10], Sow [18] and most of the recent results in this direction.

eISSN:
2444-8656
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics