Accès libre

Two Reliable Methods for The Solution of Fractional Coupled Burgers’ Equation Arising as a Model of Polydispersive Sedimentation

À propos de cet article

Citez

Introduction

Fractional calculus, which includes arbitrary order derivatives and integrals, is the generalized form of the classical calculus. In the last decades, it has been frequently researched by many scientists to model real world problems. Therefore, it offered a decent way of implementation for plenty of models in miscellaneous areas of engineering and physics such as, electrical networks [1], fluid flow [11], image and signal processing [17], mathematical physics [30], viscoelasticity [25], biology [20], control [5] and see references therein [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44].

Besides, seeking analytical and approximate solutions of fractional partial differential equations (FPDEs) become more popular. Therefore, achieving the solutions of FPDEs important for these areas and has a distinct place.

Up to now, various powerful numerical techniques have been proposed for solutions of the (FPDEs). Some of them are, Adomian decomposition method (ADM) [21, 23], homotopy perturbation method (HPM) [2, 14], variational iteration method (VIM) [22], Legendre wavelet operational matrix method (LWOMM) [26], homotopy analysis method (HAM) [18, 19] and residual power series method [6, 7].

In this article, we use exp-function method [15] and perturbation-iteration algorithm (PIA) [27, 28, 29] to present new analytical and numerical solutions of fractional coupled Burgers’ equations given as [24]:

Dtαu+uDxu+vDyu1(Dx2u+Dy2u)=0,Dtαv+uDxv+vDyv1(Dx2v+Dy2v)=0, $$\begin{array}{} \begin{split} \displaystyle D_{t}^{\alpha }{u}+uD_{x}{u}+vD_{y}{u}-\frac{1}{\Re }(D_{x}^{2}{u}+D_{y}^{2}{% u})& ={0,} \\ D_{t}^{\alpha }{v}+uD_{x}{v}+vD_{y}{v}-\frac{1}{\Re }(D_{x}^{2}{v}+D_{y}^{2}{% v})& =0,\, \end{split} \end{array}$$

The exp-function method is a robust technique for obtaining compacton-like, periodic and solitary solutions of FPDEs. It transforms the given system to an ordinary differential equation and yields to solve it efficiently. In addition, perturbation-iteration algorithm is established by using the perturbation expansion. With choosing proper initial and boundary conditions, it can be performed directly to the model without discretization or any other special conversions.

The methodology in the other sections can be described as follows. Some basic definitions are presented in Section 2. Analysis of the implemented methods are given in Section 3. In Section 4, both methods are used to obtain analytical and approximate solutions of coupled Burgers’ equation. Finally, the paper ends with a conclusion in Section 5.

Preliminaries

There are different types of arbitrary order differentiation. The most widely used are the Riemann-Liouville(RLFD) and Caputo fractional derivatives (CFD).

Definition 1

The RLFD operator Dαf(x) for α > 0 and q – 1 < α < q defined as [12, 13]:

Dαf(x)=dqdxq1Γ(qα)αxf(t)xtα+1qdt $$\begin{array}{} \begin{split} \displaystyle D^{\alpha }f(x)=\frac{d^{q}}{dx^{q}}\left[ \frac{1}{\Gamma (q-\alpha )}% \overset{x}{\underset{\alpha }{\int }}\frac{f(t)}{\left( x-t\right) ^{\alpha +1-q}}dt\right] \end{split} \end{array}$$

Definition 2

The CFD of order α > 0 for n ∈ ℕ, n – 1 < α < n, Dα $\begin{array}{} D_{\ast }^{\alpha } \end{array}$, defined as [10]:

Dαf(x)=JnαDnf(x)=1Γ(nα)αx(xt)nα1ddtnf(t)dt $$\begin{array}{} \displaystyle D_{\ast }^{\alpha }f(x)=J^{n-\alpha }D^{n}f(x)=\frac{1}{\Gamma (n-\alpha )}% \overset{x}{\underset{\alpha }{\int }}(x-t)^{n-\alpha -1}\left( \frac{d}{dt}% \right) ^{n}f(t)dt \end{array}$$

Along with these definitions, a new fractional derivative definition, namely the conformable fractional derivative, has been introduced by Khalil et al. [16].

Definition 3

The conformable fractional derivative of an αth order function f : [0, ∞) → R is defined by

Tα(f)(t)=limε0f(t+εt1α)(f)(t)ε $$\begin{array}{} \displaystyle T_{\alpha }(f)(t)=\underset{\varepsilon \rightarrow 0}{\lim }\frac{% f(t+\varepsilon t^{1-\alpha })-(f)(t)}{\varepsilon } \end{array}$$

where 0 < α ≤ 1 and t > 0.

Theorem 1

Basic properties of conformable derivative of α-differantiable f and g functions for 0 < α ≤ 1 at point t > 0 are

Tα(mf + ng) = mTα(f) + nTα(g), m, n ∈ ℝ

Tα(tp) = ptpα for all p

Tα(f.g) = fTα(g) + gTα(f)

Tα(fg)=gTα(f)fTα(g)g2 $\begin{array}{} T_{\alpha }(\frac{f}{g})=\frac{gT_{\alpha }(f)-fT_{\alpha }(g)}{g^{2}} \end{array}$

Let f(t) = c be a constant function. Then Tα(c) = 0.

Tα(f)(t)=t1αdf(t)dt, $\begin{array}{} T_{\alpha }(f)(t)=t^{1-\alpha }\frac{df(t)}{dt}, \end{array}$ if f is differentiable.

Definition 4

The conformable partial derivatives of an αth order f function with x1, …, xn variables are [8]

dαdxiαf(x1,...,xn)=limε0f(x1,...,xi1,xi+εxi1α,...,xn)f(x1,...,xn)ε. $$\begin{array}{} \displaystyle \frac{d^{\alpha }}{dx_{i}^{\alpha }}f(x_{1},...,x_{n})=\underset{\varepsilon \rightarrow 0}{\lim }\frac{f(x_{1},...,x_{i-1},x_{i}+\varepsilon x_{i}^{1-\alpha },...,x_{n})-f(x_{1},...,x_{n})}{\varepsilon }. \end{array}$$

where 0 < α ≤ 1.

Definition 5

The conformable integral of an αth order f function starting from a ⩾ 0 is defined by [19]

Iαa(f)(s)=saf(t)t1αdt. $$\begin{array}{} \displaystyle I_{\alpha }^{a}(f)(s)=\underset{a}{\overset{s}{\int }}\frac{f(t)}{% t^{1-\alpha }}dt. \end{array}$$

Descriptions of the Implemented Methods
Exp-Function Method

Taking account into the following nonlinear time fractional equation in order to explain the basic idea of the implemented method [15]

Fu,αutα,ux,uy,2αut2α,2ux2,2uy2,=0 $$\begin{array}{} \displaystyle F\left( u,\frac{\partial ^{\alpha }u}{\partial t^{\alpha }},\frac{\partial u% }{\partial x},\frac{\partial u}{\partial y},\frac{\partial ^{2\alpha }u}{% \partial t^{2\alpha }},\frac{\partial ^{2}u}{\partial x^{2}},\frac{\partial ^{2}u}{\partial y^{2}},\ldots \right) =0 \end{array}$$

where the fractional derivatives are in conformable sense. We can introduce the wave variable as

u(x,y,t)=u(η),η=kx+wy+ctαα $$\begin{array}{} \displaystyle u(x,y,t)=u(\eta ),\eta =kx+wy+c\frac{t^{\alpha}}{\alpha} \end{array}$$

where k, w, c are arbitrary constants that can be examined later. With the help of conformable chain rule [1], we have

α(.)tα=cd(.)dη,(.)x=kd(.)dη,(.)y=wd(.)dη,. $$\begin{array}{} \displaystyle \frac{\partial ^{\alpha}(.)}{\partial t^{\alpha }}=c\frac{d(.)}{d\eta },~% \frac{\partial (.)}{\partial x}=k\frac{d(.)}{d\eta },~\frac{\partial (.)}{% \partial y}=w\frac{d(.)}{d\eta },\ldots . \end{array}$$

Hence Eq.(6) changes into differential equation with integer order as follows.

Qu,uη,uηη,uηηη,uηηηη,...=0. $$\begin{array}{} \displaystyle Q\left( u,u_{\eta },u_{\eta \eta },u_{\eta \eta \eta },u_{\eta \eta \eta \eta },...\right) =0. \end{array}$$

Due to exp-function method, it is supposed that the wave solution can be regarded in the following form

u(η)=n=djanenηs=qpbmemη=ajejη++adedηbpepη++aqeqη $$\begin{array}{} \displaystyle u(\eta )=\frac{\sum_{n=-d}^{j}a_{n}e^{n\eta }}{\sum_{s=-q}^{p}b_{m}e^{m\eta }% }=\frac{a_{j}e^{j\eta }+\ldots +a_{-d}e^{-d\eta }}{b_{p}e^{p\eta }+\ldots +a_{-q}e^{-q\eta }} \end{array}$$

where p, q, j and d are positive integers that can be examined later, an and bm are unrecognized constants. To calculate the values of j and p, highest order the linear term of Eq. (9) is equalized with the highest order nonlinear term. By using the same procedure, the values for q and d, can be calculated by balancing the lowest order linear term of Eq. (9) with lowest order nonlinear term. As a result we can acquire the traveling wave solutions of the considered Eq. (6)

Perturbation-Iteration Algorithm (PIA)

Formerly, a perturbation based algorithm has been introduced by Aksoy and Pakdemirli [3]. In the method, an iterative algorithm is proposed using the perturbation expansion. Previously, this method is implemented on ordinary FDEs [27], fractional-integro differential equations [28] and systems of FDEs [29].

In this article, the most basic PIA, PIA(1, 1) is used to attain approximate solutions of FPDEs. For this purpose, one we consider the correction term in the perturbation expansion and correction terms of first derivatives in the Taylor series expansion [3, 4].

To describe the main idea of PIA, take the FPDE

Fuα(x,t),u(x,t),ux(x,t),uxx(x,t),,ε=0, $$\begin{array}{} \displaystyle F\left( u^{\alpha }(x,t),u(x,t),u_{x}(x,t),u_{xx}(x,t),\dots ,\varepsilon \right) =0, \end{array}$$

where ε is assumed as an artificially small parameter. The perturbation expansions with one correction terms are

un+1=un+εucnTα(un+1)=Tα(un)+εucn $$\begin{array}{} \begin{split} \displaystyle u_{n+1}& =u_{n}+\varepsilon {\left( u_{c}\right) }_{n} \\ T_{\alpha }(u_{n+1})& =T_{\alpha }(u_{n})+\varepsilon {\left( u_{c}^{\prime }\right) }_{n} \end{split} \end{array}$$

Subrogating (12) into (11) and expanding in the Taylor series form for only first order derivatives yields

Funα,un,(un)x,(un)xx,,0+Fuunα,un,(un)x,(un)xx,,0εucn+Fuαunα,un,(un)x,(un)xx,,0εuc(α)n+Fuxunα,un,(un)x,(un)xx,,0ε(uc)xn+Fuxxunα,un,(un)x,(un)xx,,0ε(uc)xxn++Fεunα,un,unx,unxx,,0ε=0 $$\begin{array}{} \begin{split} \displaystyle F\left( u_{n}^{\left( \alpha \right) },u_{n},{(u_{n})}_{x},{(u_{n})}% _{xx},\dots ,0\right) & +F_{u}\left( u_{n}^{\left( \alpha \right) },u_{n},{% (u_{n})}_{x},{(u_{n})}_{xx},\dots ,0\right) \varepsilon {\left( u_{c}\right) }_{n} \\ & +F_{u^{\left( \alpha \right) }}\left( u_{n}^{\left( \alpha \right) },u_{n},% {(u_{n})}_{x},{(u_{n})}_{xx},\dots ,0\right) \varepsilon {\left( u_{c}^{(\alpha )}\right) }_{n} \\ & +F_{u_{x}}\left( u_{n}^{\left( \alpha \right) },u_{n},{(u_{n})}_{x},{% (u_{n})}_{xx},\dots ,0\right) \varepsilon {\left( {(u_{c})}_{x}\right) }_{n} \\ & +F_{u_{xx}}\left( u_{n}^{\left( \alpha \right) },u_{n},{(u_{n})}_{x},{% (u_{n})}_{xx},\dots ,0\right) \varepsilon {\left( {(u_{c})}_{xx}\right) }% _{n}+\cdots \\ & +F_{\varepsilon }\left( u_{n}^{\left( \alpha \right) },u_{n},{\left( u_{n}\right) }_{x},{\left( u_{n}\right) }_{xx},\dots ,0\right) \varepsilon =0 \end{split} \end{array}$$

or

uc(α)nFu(α)+ucnFu+(uc)xnFux+(uc)xxnFuxx++Fε+Fε=0. $$\begin{array}{} \begin{split} \displaystyle {\left( u_{c}^{(\alpha )}\right) }_{n}\frac{\partial F}{\partial u^{(\alpha )}}+{\left( u_{c}\right) }_{n}\frac{\partial F}{\partial u}+{\left( {(u_{c})}% _{x}\right) }_{n}\frac{\partial F}{\partial u_{x}}+{\left( {(u_{c})}% _{xx}\right) }_{n}\frac{\partial F}{\partial u_{xx}}+\dots +\frac{\partial F% }{\partial \varepsilon }+\frac{F}{\varepsilon }=0. \end{split} \end{array}$$

Rewriting (14) gives the subsequent PIA(1, 1) iteration formula

ut(x,t)+FuFutu(x,t)=Fε+FεFut. $$\begin{array}{} \begin{split} \displaystyle u_{t}(x,t)+\frac{F_{u}}{F_{u_{t}}}u(x,t)=-\frac{F_{\varepsilon }+\frac{F}{% \varepsilon }}{F_{u_{t}}}. \end{split} \end{array}$$

In this expansion, all of the derivatives are evaluated at ε = 0. Using an initial function u0(x, t), firstly the correction term (uc)0(x, t) is computed. Subrogating it into (12) gives the first approximate result u1(x, t). Similar procedure is applied until obtaining the other approximations.

Application of the Methods for (2 + 1)-dimensional Time-Fractional Coupled Burgers’ Equation
Analytical Solution of Coupled Burgers’ Equation

Think of the fractional coupled Burgers’ equation [24] as

Dtαu+uDxu+vDyu1(Dx2u+Dy2u)=0,Dtαv+uDxv+vDyv1(Dx2v+Dy2v)=0, $$\begin{array}{} \begin{split} \displaystyle D_{t}^{\alpha }{u}+uD_{x}{u}+vD_{y}{u}-\frac{1}{\Re }(D_{x}^{2}{u}+D_{y}^{2}{% u})& ={0,} \\ D_{t}^{\alpha }{v}+uD_{x}{v}+vD_{y}{v}-\frac{1}{\Re }(D_{x}^{2}{v}+D_{y}^{2}{% v})& =0,\, \end{split} \end{array}$$

where 0 < α ≤ 1, 𝔎, is Reynolds number, u = u(x, y, t) and v = v(x, y, t). By the help of the chain rule [1] and the wave transform η=kx+wy+ctαα, $\begin{array}{} \eta =kx+wy+c\frac{t^{\alpha }}{\alpha }, \end{array}$ we obtain

cU(η)+ku(η)U(η)+wV(η)U(η)1(k2+w2)U(η)=0cV(η)+kuV(η)+wvV(η)1(k2+w2)V(η)=0. $$\begin{array}{} \begin{split} \displaystyle & cU^{\prime }(\eta )+ku(\eta )U^{\prime }(\eta )+wV(\eta )U^{\prime }(\eta )-\frac{1}{\Re }(k^{2}+w^{2})U^{\prime \prime }(\eta )=0 \\ & cV^{\prime }(\eta )+kuV^{\prime }(\eta )+wvV^{\prime }(\eta )-\frac{1}{\Re }(k^{2}+w^{2})V^{\prime \prime }(\eta )=0. \end{split} \end{array}$$

Now assume that the solution of (17) can be described as

U(η)=acecη++adedηbpepη++bqeqη. $$\begin{array}{} \begin{split} \displaystyle U(\eta )=\frac{a_{c}e^{c\eta }+\ldots +a_{-d}e^{-d\eta }}{b_{p}e^{p\eta }+\ldots +b_{-q}e^{-q\eta }}. \end{split} \end{array}$$

V(η)=dsesη++dnenηflelη++frerη. $$\begin{array}{} \begin{split} \displaystyle V(\eta )=\frac{d_{s}e^{s\eta }+\ldots +d_{-n}e^{-n\eta }}{f_{l}e^{l\eta }+\ldots +f_{-r}e^{-r\eta }}. \end{split} \end{array}$$

Using (18), (19) and (17) led to c = p, d = q, s = l and n = r. For convenience lets assume all the coefficients c = p = s = l = n = r = 1. Now rewriting u(η) and v(η) due to above assumptions

U=a1eη+a0+a1eηb1eη+b0+b1eηV=d1eη+d0+d1eηf1eη+f0+f1eη. $$\begin{array}{} \begin{split} \displaystyle & U=\frac{a_{{1}}{e^{\eta }}+a_{{0}}+a_{{-1}}{e^{-\eta }}}{b_{{1}}{e^{\eta }}% +b_{{0}}+b_{{-1}}{e^{-\eta }}} \\ & V={\frac{d_{{1}}{e^{\eta }}+d_{{0}}+d_{{-1}}{e^{-\eta }}}{f_{{1}}{e^{\eta }% }+f_{{0}}+f_{{-1}}{e^{-\eta }}}}. \end{split} \end{array}$$

Substituting the equations (20) into (17) and equalizing the coefficients of e yields a system of algebraic equations. Solving the system with respect to the constants expressed above we can handle the following solutions

c=wd0b0+k2f0b0+w2f0b0+ka0f0b0f0,a1=f1wd0b0+2k2b0f1f0+2w2b0f1f0+ka0f1f0b0wd1f0kf02,a1=0,b1=b0f1f0,a1=0,b1=0,d1=0,f1=0. $$\begin{array}{} \begin{split} \displaystyle & c=-{\frac{\Re wd_{{0}}b_{{0}}+{k}^{2}f_{{0}}b_{{0}}+{w}^{2}f_{{0}}b_{{0}% }+ka_{{0}}f_{{0}}}{\Re b_{{0}}f_{{0}}}}, \\ & a_{-1}={\frac{f_{{-1}}\Re wd_{{0}}b_{{0}}+2\,{k}^{2}b_{{0}}f_{{-1}}f_{{0}% }+2\,{\ w}^{2}b_{{0}}f_{{-1}}f_{{0}}+\Re ka_{{0}}f_{{-1}}f_{{0}}-\Re b_{{0}% }wd_{{-1}}f_{{0}}}{\Re k{f_{{0}}}^{2}}}, \\ & a_{1}=0,b_{-1}={\frac{b_{{0}}f_{{-1}}}{f_{{0}}}}, \\ & a_{1}=0,b_{1}=0,d_{1}=0,f_{1}=0. \end{split} \end{array}$$

So the solutions can be obtained as

u(x,y,t)=a0+AeBb0+b0f1eBf01kf02 $$\begin{array}{} \begin{split} \displaystyle u(x,y,t)=\frac{a_{{0}}+A {e^{B}}b_{0}+b_{0}f_{{-1}}{e^{B}}{f_{{0}}}^{-1}}{% \Re {k}{f_{{0}}}^{2}} \end{split} \end{array}$$

and

v(x,y,t)=d0+d1eBf0+f1eB $$\begin{array}{} \begin{split} \displaystyle v(x,y,t)=\frac{d_{{0}}+d_{{-1}}{e^{B}}}{f_{{0}}+f_{{-1}}{e^{B}}} \end{split} \end{array}$$

where

A=f1wd0b0+2k2b0f1f0+2w2b0f1f0+ka0f1f0b0wd1f0B=kxwy+wd0b0+k2f0b0+w2f0b0+ka0f0tαb0f0α $$\begin{array}{} \begin{split} \displaystyle & A=\left( f_{{-1}}\Re wd_{{0}}b_{{0}}+2{k}^{2}b_{{0}}f_{{-1}}f_{{0}% }+2\,{w}^{2}b_{{0}}f_{{-1}}f_{{0}}+\Re ka_{{0}}f_{{-1}}f_{{0}}-\Re b_{{0}% }wd_{{-1}}f_{{0}}\right) \\ & B=-kx-wy+{\frac{\left( \Re wd_{{0}}b_{{0}}+{k}^{2}f_{{0}}b_{{0}}+{w}^{2}f_{% {0}}b_{{0}}+\Re ka_{{0}}f_{{0}}\right) {t}^{\alpha }}{\Re b_{{0}}f_{{0}% }\alpha }} \end{split} \end{array}$$

Approximate Solution of Coupled Burgers’ Equations

Regard the system (16) with the the conditions u(x,y,0)=1+14+8exy1+12exyandv(x,y,0)=1+exy2+exy. $\begin{array}{} {u}(x,y,0)=\frac{% 1+\frac{1}{4\Re }\left( \Re +8\right) {e^{-x-y}}}{1+\frac{1}{2}{e^{-x-y}}}~~ \text{and}~~ {v}(x,y,0)=\frac{1+{e^{-x-y}}}{2+{e^{-x-y}}}. \end{array}$ For the values k = 1, w = 1, f0 = 2, d0 = 1, b0 = 1, d–1 = 1, b–1 = 1, f–1 = 1 and a0 = 1, we can acquire the exact solutions as

u(x,y,t)=1+14+8exy+3+4tα2α1+12exy+3+4tα2Rα,v(x,y,t)=1+exy+3+4tα2α2+exy+3+4tα2α. $$\begin{array}{} \begin{split} \displaystyle u(x,y,t)& =\frac{1+\frac{1}{4}\,\left( \Re +8\right) {e^{-x-y+\,{\frac{% \left( 3\,\Re +4\right) {t}^{\alpha }}{2\Re \alpha }}}}}{1+\frac{1}{2}\,{% e^{-x-y+\,{\frac{\left( 3\,\Re +4\right) {t}^{\alpha }}{2\mathfrak{R}\alpha }% }}}}, \\ v(x,y,t)& =\frac{1+{e^{-x-y+\,{\frac{\left( 3\,\Re +4\right) {t}^{\alpha }}{% 2\Re \alpha }}}}}{2+{e^{-x-y+\,{\frac{\left( 3\,\Re +4\right) {t}^{\alpha }}{% 2\Re \alpha }}}}}. \end{split} \end{array}$$

Now we introduce a small perturbation parameter ε to the system and rewrite the equations as

Dtαu+εuDxu+εvDyu1(Dx2u+Dy2u)=0,Dtαv+εuDxv+εvDyv1(Dx2v+Dy2v)=0, $$\begin{array}{} \begin{split} \displaystyle D_{t}^{\alpha }{u}+{\varepsilon }uD_{x}{u}+{\varepsilon }vD_{y}{u}-\frac{1}{% \Re }(D_{x}^{2}{u}+D_{y}^{2}{u})& ={0,} \\ D_{t}^{\alpha }{v}+{\varepsilon }uD_{x}{v}+{\varepsilon }vD_{y}{v}-\frac{1}{% \Re }(D_{x}^{2}{v}+D_{y}^{2}{v})& =0,\, \end{split} \end{array}$$

Therefore, terms in formula (15)turn into

F=t1α(un)t(x,y,t)1(un)xx(x,y,t)+(un)yy(x,y,t),Fu=0,Fut=t1α,Fε=un(x,y,t)unx(x,y,t)+vn(x,y,t)(un)y(x,y,t) $$\begin{array}{} \begin{split} \displaystyle F& =t^{1-\alpha }(u_{n})_{t}(x,y,t)-\frac{1}{\Re }\left( (u_{n})_{xx}(x,y,t)+(u_{n})_{yy}(x,y,t)\right) ,\text{ }F_{{u}}=0,\quad \\ F_{{u}_{t}}& =t^{1-\alpha },\text{ }F_{\varepsilon }=u_{n}(x,y,t)\left( {u}% _{n}\right) _{x}(x,y,t)+v_{n}(x,y,t)(u_{n})_{y}(x,y,t) \end{split} \end{array}$$

and

F=t1α(vn)t(x,y,t)1(vn)xx(x,y,t)+(vn)yy(x,y,t),Fv=0,Fvt=t1α,Fε=un(x,t)(vn)x(x,t)+vn(x,t)(vn)y(x,t) $$\begin{array}{} \begin{split} \displaystyle F& =t^{1-\alpha }(v_{n})_{t}(x,y,t)-\frac{1}{\Re }\left( (v_{n})_{xx}(x,y,t)+(v_{n})_{yy}(x,y,t)\right) ,\text{ }F_{{v}}=0, \\ F_{v_{t}}& =t^{1-\alpha },\text{ }F_{\varepsilon }=u_{n}(x,t)(v_{n})_{x}(x,t)+v_{n}(x,t)(v_{n})_{y}(x,t) \end{split} \end{array}$$

Subrogating above terms in the iteration formula (15) gives the subsequent partial differential equations

εtuct=tunt+tα((un)xxε(un(un)x+vn(un)y)+(un)yy) $$\begin{array}{} \begin{split} \displaystyle \varepsilon \Re \mathfrak{t}\left( u_{c}\right) _{t}=-\Re t\left( u_{n}\right) _{t}+t^{\alpha }((u_{n})_{xx}-\varepsilon \Re (u_{n}(u_{n})_{x}+v_{n}(u_{n})_{y})+(u_{n})_{yy}) \end{split} \end{array}$$

and

εtvct=tvnt+tα((vn)xxε(un(vn)x+vn(vn)y)+(vn)yy) $$\begin{array}{} \begin{split} \displaystyle \varepsilon \Re \mathfrak{t}\left( v_{c}\right) _{t}=-\Re t\left( v_{n}\right) _{t}+t^{\alpha }((v_{n})_{xx}-\varepsilon \Re (u_{n}(v_{n})_{x}+v_{n}(v_{n})_{y})+(v_{n})_{yy}) \end{split} \end{array}$$

Beginning with the initial functions

u(x,y,0)=1+14+8exy1+12exyandv(x,y,0)=1+exy2+exy $$\begin{array}{} \begin{split} \displaystyle {u}(x,y,0)=\frac{1+\frac{1}{4\Re }\left( \Re +8\right) {e^{-x-y}}}{1+\frac{1% }{2}{e^{-x-y}}}~\text{and}~{v}(x,y,0)=\frac{1+{e^{-x-y}}}{2+{e^{-x-y}}} \end{split} \end{array}$$

and using (15), the numerical results are obtained for n = 0, 1, 2, … respectively.

u1(x,y,t)=4ex+y++822ex+y+1(8)(3+4)tαex+y2α22ex+y+12 $$\begin{array}{} \begin{split} \displaystyle u_{1}(x,y,t) &=&\frac{4\Re e^{x+y}+\Re +8}{2\Re \left( 2e^{x+y}+1\right) }-% \frac{(\Re -8)(3\Re +4)t^{\alpha }e^{x+y}}{2\alpha \Re ^{2}\left( 2e^{x+y}+1\right) ^{2}} \end{split} \end{array}$$

v1(x,y,t)=(3+4)tαex+y2α2ex+y+12+ex+y+12ex+y+1 $$\begin{array}{} \begin{split} \displaystyle v_{1}(x,y,t) &=&\frac{(3\Re +4)t^{\alpha }e^{x+y}}{2\alpha \Re \left( 2e^{x+y}+1\right) ^{2}}+\frac{e^{x+y}+1}{2e^{x+y}+1} \end{split} \end{array}$$

u2(x,y,t)=(8)(3+4)2t2αex+y2ex+y13α2ex+y+12+16tαex+y24α342ex+y+15(8)(3+4)tαex+y2α2ex+y+2+822ex+y+1+1 $$\begin{array}{} \begin{split} \displaystyle u_{2}(x,y,t) &=&-\frac{(\Re -8)(3\Re +4)^{2}t^{2\alpha }e^{x+y}\left( 2e^{x+y}-1\right) \left( 3\alpha \Re \left( 2e^{x+y}+1\right) ^{2}+16t^{\alpha }e^{x+y}\right) }{24\alpha ^{3}\Re ^{4}\left( 2e^{x+y}+1\right) ^{5}} \notag \\ &&-\frac{(\Re -8)(3\Re +4)t^{\alpha }e^{x+y}}{2\alpha \left( 2\Re e^{x+y}+\Re \right) ^{2}}+\frac{8-\Re }{2\Re \left( 2e^{x+y}+1\right) }+1 \end{split} \end{array}$$

v2(x,y,t)=2(3+4)2t3αe2x+2y2ex+y13α332ex+y+15+(3+4)2t2αex+y2ex+y18α222ex+y+13+(3+4)tαex+y2α2ex+y+12+ex+y+12ex+y+1 $$\begin{array}{} \begin{split} \displaystyle v_{2}(x,y,t) &=&\frac{2(3\Re +4)^{2}t^{3\alpha }e^{2x+2y}\left( 2e^{x+y}-1\right) }{3\alpha ^{3}\Re ^{3}\left( 2e^{x+y}+1\right) ^{5}}+\frac{% (3\Re +4)^{2}t^{2\alpha }e^{x+y}\left( 2e^{x+y}-1\right) }{8\alpha ^{2}\Re ^{2}\left( 2e^{x+y}+1\right) ^{3}} \notag \\ &&+\frac{(3\Re +4)t^{\alpha }e^{x+y}}{2\alpha \Re \left( 2e^{x+y}+1\right) ^{2}}+\frac{e^{x+y}+1}{2e^{x+y}+1} \end{split} \end{array}$$

Similarly, the fourth order solutions u4(x, y, t) and v4(x, y, t) are calculated. In Table 1 and 2, the fourth order PIA numerical approximate solutions are compared to exact solutions. Also the absolute errors are calculated for changing values of α and x. The results indicate the reliability of PIA. Besides using Figures 16, figures for the solutions of PIA are illustrated for changing α values. They exhibit that PIA produces highly approximate results. It is also obvious that further iterations would generate convenient solutions.

Fig. 1

The surface plot of the PIA solution u4(x, y, t) for ℜ = 100 and t = 0.1 when α = 0.75.

Fig. 2

The surface plot of the PIA solution v4(x, y, t) for ℜ = 100 and t = 0.1 when α = 0.75.

Fig. 3

The surface plot of the PIA solution u4(x, y, t) for ℜ = 100 and t = 0.1 when α = 0.85.

Fig. 4

The surface plot of the PIA solution v4(x, y, t) for ℜ = 100 and t = 0.1 when α = 0.85.

Fig. 5

The surface plot of the PIA solution u4(x, y, t) for ℜ = 100 and t = 0.1 when α = 0.95.

Fig. 6

The surface plot of the PIA solution v4(x, y, t) for ℜ = 100 and t = 0.1 when α = 0.95.

PIA (u4(x, y, t)) and exact solution values with absolute errors for y = 1, t = 0.1 and ℜ = 100.

α = 0.75 α = 0.85 α = 0.95

x PIA Exact Error PIA Exact Error PIA Exact Error
0.0 0.903993 0.903996 2.72276E-6 0.911928 0.911928 4.58229E-7 0.917015 0.917015 8.27357E-8
0.1 0.911369 0.911371 2.60627E-6 0.91883 0.918831 4.36394E-7 0.923600 0.923600 7.85330E-8
0.2 0.918305 0.918308 2.43193E-6 0.925300 0.925301 4.05356E-7 0.929761 0.929761 7.27317E-8
0.3 0.924809 0.924811 2.21778E-6 0.931348 0.931348 3.68115E-7 0.935508 0.935508 6.58693E-8
0.4 0.930889 0.930891 1.97981E-6 0.936986 0.936986 3.27310E-7 0.940856 0.940856 5.84150E-8
0.5 0.936559 0.936561 1.73155E-6 0.94223 0.942230 2.85150E-7 0.945821 0.945821 5.07597E-8
0.6 0.941833 0.9411865 1.48390E-6 0.947095 0.947095 2.43396E-7 0.950421 0.950421 4.32130E-8
0.7 0.946727 0.946729 1.24520E-6 0.951600 0.951600 2.03383E-7 0.954674 0.954674 3.60076E-8
0.8 0.951260 0.951261 1.02143E-6 0.955763 0.955763 1.66055E-7 0.958600 0.958600 2.93064E-8
0.9 0.955449 0.95545 8.16543E-7 0.959603 0.959603 1.32019E-7 0.962216 0.962216 2.32127E-8
1.0 0.959314 0.959314 6.32769E-7 0.963139 0.963139 1.01605E-7 0.965542 0.965542 1.77807E-8

PIA (v4(x, y, t)) and exact solution values with absolute errors for y = 1, t = 0.1 and ℜ = 100.

α = 0.75 α = 0.85 α = 0.95

x PIA Exact Error PIA Exact Error PIA Exact Error
0.0 0.604355 0.604352 2.95952E-6 0.595730 0.595730 4.98075E-7 0.590201 0.590201 8.99301E-8
0.1 0.596338 0.596335 2.83291E-6 0.588228 0.588228 4.74342E-7 0.583043 0.583043 8.53620E-8
0.2 0.588799 0.588796 2.64341E-6 0.581195 0.581195 4.40604E-7 0.576347 0.576347 7.90562E-8
0.3 0.581729 0.581727 2.41063E-6 0.574622 0.574622 4.00125E-7 0.570100 0.570100 7.15971E-8
0.4 0.575120 0.575118 2.15196E-6 0.568493 0.568493 3.55772E-7 0.564287 0.564287 6.34946E-8
0.5 0.568957 0.568956 1.88212E-6 0.562794 0.562794 3.09945E-7 0.558890 0.558890 5.51736E-8
0.6 0.563225 0.563223 1.61293E-6 0.557506 0.557506 2.64561E-7 0.553890 0.553890 4.69707E-8
0.7 0.557905 0.557904 1.35347E-6 0.552609 0.552609 2.21069E-7 0.549267 0.549267 3.91387E-8
0.8 0.552978 0.552977 1.11025E-6 0.548084 0.548084 1.80495E-7 0.545000 0.545000 3.18548E-8
0.9 0.548425 0.548424 8.87547E-7 0.543910 0.543910 1.43499E-7 0.541070 0.541070 2.52312E-8
1.0 0.544224 0.544223 6.87793E-7 0.540066 0.540066 1.10441E-7 0.537454 0.537454 1.93268E-8

Conclusion

In this study, initially exp-function method is employed to acquire a new exact solution set for fractional coupled Burgers’ system of equations comes with polydispersive sedimentation. Then using PIA, some approximate solutions of the system are presented. It is observed that the exp-function method appears to be a robust and adequate tool for handling of FPDEs. Besides, comparison of the approximate solutions obtained by PIA for α = 0.75, α = 0.85 and α = 0.95 reveals the power and fast convergence rate of the method even after a few approximations. The main advantage of the method is it does not require any special assumptions or transformations. Thus it is obvious that both methods are powerful tools for solution of FPDEs and they are ready to be applied to different types of FPDEs arising in different research areas.

eISSN:
2444-8656
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics