Accès libre

A New Approach For Weighted Hardy’s Operator In VELS

À propos de cet article

Citez

Introduction

Variable exponent studies have been stimulated by problems of elasticity, fluid dynamics, calculus of variations and differential equations with a non-standard growth condition, we refer to monographs [7, 11, 12, 13, 15, 18, 21, 23, 29, 30, 31]. The boundedness problems for weighted Hardy’s operator in variable exponent Lebesgue spaces Lp(.) are well studied, we refer to monographs [4, 9, 14, 16, 17, 19, 20, 22, 24, 26, 27, 28]. In this connection, a necessary and sufficient condition that assumes a log-regularity of exponent function near origin and infinity has been proved in [1, 5, 6, 8, 10, 17, 23]. For a compactness problem of main integral operators in variable exponent Lebesgue space, we refer to [2, 3, 25] and especially for Hardy’s operator [4].

In this paper, we establish an integral-type necessary and sufficiency condition on a monotone weighted exponent function p : (0, ∞) → (1, ∞) governing the boundedness

1xv(x)0xf(t)w(t)dtLp(0,)CfLp(0,) $$\begin{array}{} \displaystyle \left\Vert \frac{1}{x}v(x)\int\limits_{0}^{x}f(t)w(t)dt\right\Vert _{L^{p}(0,\infty )}\leq C\left\Vert f\right \Vert _{L^{p}(0,\infty )} \end{array}$$

of Hardy’s operator 1xv(x)0xf(t)w(t)dt $\begin{array}{} \frac{1}{x}v(x)\int_{0}^{x}f(t)w(t)dt \end{array}$ in Lp(x)(0, ∞).

The following main result has been obtained in this study.

Theorem 1.1

Let p : (0, ∞) → (1, ∞) be a measurable function monotony increasing on some neighborhood of origin (0, ε) and decreasing on some neighborhood of infinity (N, ∞) such that p+ < ∞ and p(∞) > 1. Then it holds the inequality

1xv(x)0xf(t)w(t)dtLp(0,)C1fLp(0,) $$\begin{array}{} \displaystyle \left\Vert \frac{1}{x}v(x)\int_0^x f(t)w(t)dt \right \Vert _{L^{p}(0,\infty )}\leq C_1\left\Vert f\right\Vert _{L^{p}(0,\infty )} \end{array}$$

for any positive measurable function f(x) on (0, ∞) with a positive constant C1 depending on constant C2 below and p+, p(∞) if and only if the condition

bx1p(x)dxxC2b1p(b),b>0. $$\begin{array}{} \displaystyle \int_b^\infty x^{- \frac{1}{p^\prime (x)}}\, \frac{dx}{x}\leq C_{2}b^{- \frac{1}{p^\prime (b)}},\quad b \gt 0\text{.} \end{array}$$

is satisfied.

We use the following notation.By C, Ci we denote a positive constant depending on p(∞), p+ and C2 from the conditions (2). We use also notation p+ = sup {p(x) : x ∈ (0, ∞)} and p = inf{p(x) : x ∈ (0, ∞)}. Recall the norm in variable exponent Lebesgue space Lp(.)(0, ∞) given as ∥f∥ = inf {λ > 0 : Ip(.) (fλ) $\begin{array}{} \displaystyle \big(\frac{f}{\lambda} \big) \end{array}$ ≤ 1} makes it as a Banach space, where the modular Ip(.)(f) = 0 $\begin{array}{} \int_0^\infty \end{array}$ | f(t)|p(t)dt. Denote ∥fp(.) or ∥fLp(.)(0,∞) for the Lp(.)(0, ∞) variable exponent Lebesgue norm of function f. For a function p : [0, ∞) → [1, ∞) denote p′(x) the function satisfying 1p(x)+1p(x)=1 $\begin{array}{} \displaystyle \frac{1}{p(x)}+\frac{1}{p'(x)} = 1 \end{array}$ and p′ = ∞ if p = 1.

Denote by χE the characteristic function of set ER. The weight functions v and w are assumed to be measurable and having non-negative finite values almost everywhere in (0, ∞).

Auxiliary Statements

In this section, we prove some auxiliary assertions in order to prove the main result of this paper.

Lemma 2.1

Let the condition (2) be satisfied for a monotone increasing near the origin on (0, ε) and decreasing near infinity on (N, ∞) function p : (0, ∞) → (1, ∞) such that p+ < ∞. Then there exists a positive constant C3 depending on C2, p+ such that

[p(2b)p(b)]ln1bC3forb(0,δ) $$\begin{array}{} \displaystyle \lbrack p(2b)-p(b)]\ln \frac{1}{b}\leq C_{3}{ \,\, for \,\, }b\in (0,\delta ) \end{array}$$

and

[p(b)p(2b)]lnbC4forb(N,). $$\begin{array}{} \displaystyle [ p(b)-p(2b)] \ln b \leq C_{4} ~~ for ~~b\in (N,\infty ). \end{array}$$

Proof

The proof for b ∈ (0, 1) similar to those in (see [10] the Lemma 4.1 therein). For the completeness of presentation, we consider here the both cases b ∈ (0, ε) and b ∈ (N, ∞).

Let the case b ∈ (0, 1) be considered. Write the condition (2) over interval (0, 1):

bx1p(x)dxxC2b1p(b),0<b<14. $$\begin{array}{} \displaystyle \int\limits_{b}^{\infty }x^{-\frac{1}{p^{^{\prime }}(x)}}\frac{dx}{x}\leq C_{2}b^{-\frac{1}{p^{^{\prime }}(b)}},\quad 0 \lt b \lt \frac{1}{4}. \end{array}$$

By monotony increasing of p, x1p(x)(4b)1p(2b) $\begin{array}{} \displaystyle x^{-\frac{1}{p^{^{\prime }}(x)}}\geq (4b)^{-\frac{1}{ p^{^{\prime }}(2b)}} \end{array}$ for x ∈ (2b, 4b), where 0 < b < 14 $\begin{array}{} \displaystyle \frac{1}{4} \end{array}$. From this, it follows that

C2b1p(b)b2bx1p(x)dxx(4b)1p(2b)ln2. $$\begin{array}{} \displaystyle C_{2}b^{-\frac{1}{p^{^{\prime }}(b)}}\geq \int\limits_{b}^{2b}x^{-\frac{1}{ p^{^{\prime }}(x)}}\frac{dx}{x}\geq (4b)^{-\frac{1}{p^{^{\prime }}(2b)}}\ln 2. \end{array}$$

Therefore, for 0 < b < 14 $\begin{array}{} \displaystyle \frac{1}{4} \end{array}$, we have

1b1p(b)1p(2b)C2ln241p(2b)4C2ln2=C3. $$\begin{array}{} \displaystyle \left( \frac{1}{b}\right) ^{\frac{1}{p(b)}-\frac{1}{p(2b)}}\leq \frac{C_{2}}{ \ln 2}4^{^{\frac{1}{p^{^{\prime }}(2b)}}}\leq \frac{4C_{2}}{\ln 2}=C_{3} \text{.} \end{array}$$

This proves (3).

Let b > N and p(x) decreases near infinity, say for x > M. Then x1p(x)x1p(2b) $\begin{array}{} \displaystyle x^{-\frac{1}{p^{^{\prime }}(x)}}\geq x^{-\frac{1}{ p^{^{\prime }}(2b)}} \end{array}$ for x ∈ (b, 2b) and b > N. Therefore, from condition (2) over (N, ∞), it follows that,

bx1p(x)dxxC2b1p(b),b>N. $$\begin{array}{} \displaystyle \int\limits_{b}^{\infty }x^{-\frac{1}{p^{^{\prime }}(x)}}\frac{dx}{x}\leq C_{2}b^{-\frac{1}{p^{^{\prime }}(b)}},\quad b \gt N. \end{array}$$

Then

C2b1p(b)b2bx1p(x)dxxb2bx1p(2b)dxxa1p(2b)ln2. $$\begin{array}{} \displaystyle C_{2}b^{-\frac{1}{p^{^{\prime }}(b)}}\geq \int\limits_{b}^{2b}x^{-\frac{1}{ p^{^{\prime }}(x)}}\frac{dx}{x} \geq \int\limits_{b}^{2b}x^{-\frac{1}{ p^{^{\prime }}(2b)}}\frac{dx}{x} \geq a^{-\frac{1}{p^{^{\prime }}(2b)}}\ln 2 \text{.} \end{array}$$

and a decreasing of p over (b, 2b) provides

x1p(2b)21p(2b)b1p(2b)b1p(2b)ln2. $$\begin{array}{} \displaystyle x^{-\frac{1}{ p^{^{\prime }}(2b)}} \ge 2^{\frac{1}{ p^{^{\prime }}(2b)}} b^{-\frac{1}{ p^{^{\prime }}(2b)}} \ge b^{-\frac{1}{ p^{^{\prime }}(2b)}} \ln 2. \end{array}$$

Therefore, for b > N, we have

b1p(2b)1p(b)C2ln2=C5 orbp(b)p(2b)C6. $$\begin{array}{} \displaystyle b^{\frac{1}{p(2b)}-\frac{1}{p(b)}} \leq \frac{C_{2}}{\ln 2}=C_5 ~~~ \text{ or} ~ ~~ b ^{p(b)-p(2b)}\leq C_{6}. \end{array}$$

Whence,

bp(b)p(2b)C6,b>N $$\begin{array}{} \displaystyle b^{p(b)-p(2b)}\leq C_{6}, \, \,~b \gt N \end{array}$$

where C6=C5p(N)2. $\begin{array}{} \displaystyle C_6=C_5 ^{p(N)^2}. \end{array}$ Therefore (4) satisfied by a constant C4 = (p+)2 ln C5. This proves Lemma 2.1

Lemma 2.2

Let the condition (2) be satisfied for a monotone increasing near origin on (0, ε) and decreasing near infinity on (N, ∞) function p : (0, ∞) → (1, ∞) such that p+ < ∞. Then there exists an δ > 0 depending on C2, p+ such that the function xδ1p(x) $\begin{array}{} \displaystyle x^{\delta - \frac{1}{p^\prime (x)}} \end{array}$ is almost decreasing near origin (0, ε) and infinity (N, ∞).

Proof

Set g(x)=xt1p(t)dtt,x>0. $\begin{array}{} g(x)=\int\limits_{x}^{\infty }t^{-\frac{1}{p^{^{\prime }}(t)}}\frac{ dt}{t}, \quad x \gt 0. \end{array}$ From (2), it follows that

g(x)C2xg(x),0<x<ε. $$\begin{array}{} \displaystyle g(x)\leq -C_{2}xg^{\prime }(x),~~~~~~0 \lt x \lt \varepsilon \text{.} \end{array}$$

First, integrating this inequality over (t1, t2) with 0 < t1 < t2 < ε, we get

t21C2g(t2)C2t11p(t1)+1C2. $$\begin{array}{} \displaystyle t_{2}^{\frac{1}{C_{2}}}g(t_{2})\leq C_{2}t_{1}^{-\frac{1}{p^{\prime }(t_{1})} +\frac{1}{C_{2}}} \text{.} \end{array}$$

On the other hand, using the conditions (2) and (3) for 0 < t2 < ε, we get

g(t2)t22t2x1p(x)dxx121p(2t2)ln21t21p(t2)ln22t21p(t2). $$\begin{array}{} \displaystyle g(t_{2})\geq \int\limits_{t_{2}}^{2t_{2}}x^{-\frac{1}{p^{\prime }(x)}}\frac{ dx}{x}\geq \left( \frac{1}{2}\right) ^{\frac{1}{p^{\prime }(2t_{2})}}\ln 2\left( \frac{1}{t_{2}}\right) ^{\frac{1}{p^{\prime }(t_{2})}}\geq \frac{\ln 2}{2}t_{2}^{-\frac{1}{p^{\prime }(t_{2})}}. \end{array}$$

Inserting this in (5) for all 0 < t1 < t2 < ε we get

t21p(t2)+1C22C2ln2t11p(t1)+1C2. $$\begin{array}{} \displaystyle t_2^{-\frac{1}{p^{\prime }(t_{2})}+\frac{1}{C_{2}}}\le \frac{2C_2 }{\ln 2 }t_{1}^{-\frac{1}{p^{\prime }(t_{1})}+\frac{1}{C_{2}}} . \end{array}$$

Now, let N < t1 < t2 < ∞. We will show that again (5) holds for all N < t1 < t2 < ∞. From (3), it follows that

g(x)C2xg(x),N<x<. $$\begin{array}{} \displaystyle g(x)\le -C_2 x g'(x), \quad N \lt x \lt \infty. \end{array}$$

Integrating this inequality over (t1, t2) for N < t1 < t2 < ∞ from (2), it follows that

g(x)C2xg(x),N<x<. $$\begin{array}{} \displaystyle g(x)\leq -C_{2}xg^{\prime }(x),~~~~~N \lt x \lt \infty \text{.} \end{array}$$

Integrating this inequality over (t1, t2), for N < t1 < t2 < ∞, we get

t21C2g(t2)C2t11p(t1)+1C2. $$\begin{array}{} \displaystyle t_2^{\frac{1}{C_2}}g(t_2)\le C_2 t_{1}^{-\frac{1}{ p^\prime (t_{1})}+ \frac{1}{C_2}}. \end{array}$$

On the other hand, using conditions (2) and (4), we get

g(t2)t22t2x1p(x)dxxln212t21p(2t2)21p(N)ln2t21p(t2),t2N. $$\begin{array}{} \displaystyle g(t_{2})\geq \int\limits_{t_{2}}^{2t_{2}}x^{-\frac{1}{p^{\prime }(x)}}\frac{ dx}{x}\geq \ln 2 \left( \frac{1}{2t_{2}}\right) ^{\frac{1}{p^{\prime}(2t_{2})}} \geq ~ 2^{-\frac{1}{p'(N)}} \ln 2 ~ t_{2}^{-\frac{1}{p^{\prime }( t_{2})}}, \quad t_2 \geq N. \end{array}$$

Inserting this in (6), we obtain,

t21p(t2)+1C22C2ln2t11p(t1)+1C2 $$\begin{array}{} \displaystyle t_2^{-\frac{1}{p^{\prime }(t_{2})}+\frac{1}{C_{2}}}\le \frac{2C_2}{\ln 2}t_{1}^{-\frac{ 1}{p^{\prime }(t_{1})}+\frac{1}{C_{2}}} \end{array}$$

for all N < t1 < t2 < ∞. Whence, the function xδ1p(x) $\begin{array}{} \displaystyle x^{\delta -\frac{1}{p^{^{\prime }}(x)}} \end{array}$ is almost decreasing on (N, ∞). Therefore, we have proved that

t21p(t2)+δC7t11p(t1)+δ $$\begin{array}{} \displaystyle t_{2}^{-\frac{1}{p^{\prime }(t_{2})}+\delta }\leq C_{7}t_{1}^{-\frac{1}{ p^{\prime }(t_{1})}+\delta } \end{array}$$

for all 0 < t1 < t2 < ε and N < t1 < t2 < ∞. The constants C7=2C2ln2,δ=1C2. $\begin{array}{} \displaystyle C_{7}= \frac{2C_{2}}{\ln 2}, ~ \delta =\frac{1}{C_{2}}. \end{array}$

This proves Lemma 2.2

Lemma 2.3

Let the condition (2) be satisfied for a monotone increasing near origin on (0, ε) and decreasing near infinity on (N, ∞) function p : (0, ∞) → (1, ∞) such that p+ < ∞. Then for 0 < x < ε or for x > N and t ∈ (2n–1 x, 2n x), the following inequality holds:

x1p(x)C72nδt1p(t) . $$\begin{array}{} \displaystyle x^{-\frac{1}{p^{\prime }(x)}}\leq C_{7}2^{-n\delta } t^{-\frac{1}{ p^\prime (t)} } \text{ .} \end{array}$$

Proof

By applying Lemma 2.2 for 2n–1x < t < 2nx, 0 < x < ε or x > N, we have

xδ1p(x)C7tδ1p(t), $$\begin{array}{} \displaystyle x^{\delta -\frac{1}{p^{\prime }(x)}}\leq C_{7}t^{\delta -\frac{1}{ p^{\prime }(t)}}, \end{array}$$

since in both cases t < x. Indeed, using that 2n–1x < t < 2nx and Lemma 2.2, we get

x1p(x)C7txδt1p(t)C72nδt1p(t) $$\begin{array}{} \displaystyle x^{-\frac{1}{p^{\prime }(x)}}\leq C_{7}\left( \frac{t}{x}\right) ^{\delta }t^{-\frac{1}{p^{\prime }(t)}}\leq C_{7}2^{-n\delta }t^{- \frac{1}{p^{\prime }(t)}} \end{array}$$

or

x1p(x)C72nδt1p(t)for0<x<εorx>N. $$\begin{array}{} \displaystyle x^{-\frac{1}{p^{\prime }(x)}}\leq C_{7}2^{-n\delta }t^{-\frac{1}{ p^{\prime }(t)}} \quad \text{for}\quad 0 \lt x \lt \varepsilon \quad \text{or} \quad x \gt N. \end{array}$$

This completes the proof of Lemma 2.3

By applying preceding lemmas, we easily get the following assertion.

Lemma 2.4

Let the condition (2) be satisfied for a monotone increasing near origin on (0, ε) and decreasing near infinity on (N, ∞) function p : (0, ∞) → (1, ∞) such that p+ < ∞. Then for 0 < x < ε or x > N and t ∈ (2n–1x, 2nx), the following estimate holds

2nx1px,nC8t1p(t), $$\begin{array}{} \displaystyle \left( 2^{-n}x\right) ^{\frac{1}{\left( p_{x,n}^{-}\right) ^{\prime }}}\leq C_{8}t^{\frac{1}{p^{\prime }(t)}}\text{,} \end{array}$$

where px,n $\begin{array}{} \displaystyle p_{x,n}^- \end{array}$ = inf {p(s) : s ∈ (2n–1x, 2nx)}.

Proof

Using the assertions of Lemma 2.1 and condition (2), we get

2nx1px,n2t1px,n2t1px,n2t1p(t)t1px,n1p(t)2t1p(t)tpx,np(t)px,np(t)2t1p(t)1tp(t)px,npx,np(t)C8t1p(t). $$\begin{array}{c} \displaystyle \left( 2^{-n}x\right) ^{\frac{1}{\left( p_{x,n}^{-}\right) ^{\prime }}}\leq \left( 2t\right) ^{\frac{1}{\left( p_{x,n}^{-}\right) ^{\prime }} }\leq 2t^{\frac{1}{\left( p_{x,n}^{-}\right) ^{\prime }}}\\ \displaystyle\leq 2t^{\frac{1}{p^{\prime }(t)}}t^{\frac{1}{\left( p_{x,n}^{-}\right) ^{\prime }}-\frac{1}{p^{\prime }(t)}}\leq 2t^{\frac{1}{ p^{\prime }(t)}}t^{\frac{p_{x,n}^{-}-p(t)}{p_{x,n}^{-}p(t)}}\leq 2t^{\frac{1 }{p^{\prime }(t)}}\left( \frac{1}{t}\right) ^{\frac{p(t)-p_{x,n}^{-}}{ p_{x,n}^{-}p(t)}}\\ \displaystyle\leq C_{8} \, t^{\frac{1}{p^{\prime }(t)}}\text{.} \end{array}$$

Proof of Theorem 1.1
Sufficiency

Let the condition (2) be satisfied. we will show that inequality (1) holds. Take a measurable positive function f with

fp(.)1. $$\begin{array}{} \displaystyle \Vert f \Vert_{p(.)}\leq 1. \end{array}$$

In order to prove sufficiency, we have to show that 1xv(x)0xf(t)w(t)dt)p(.)1 $\begin{array}{} \Vert \frac{1}{x}v(x)\int_0^x f(t)w(t)dt) \Vert_{p(.)} \leq 1 \end{array}$ or the same is to show that Ip(.)1xv(x)0xf(t)w(t)dt)1 $\begin{array}{} I_{p(.)}\left(\frac{1}{x}v(x)\int_0^x f(t)w(t)dt) \right)\leq 1 \end{array}$ (see, e.g. in [10]).

Using Minkowski’s inequality for p(.)-norms we have

1xv(x)0xf(t)w(t)dtp(.);(0,)1xv(x)0xf(t)w(t)dtp(.);(0,N)+1xv(t)0xf(t)w(t)dtp(.);(N,) $$\begin{array}{c} \displaystyle \Big \Vert \frac{1}{x} v(x)\int_0^x f(t)w(t) dt \Big \Vert_{p(.); (0,\infty)}\\ \displaystyle\leq \Big \Vert \frac{1}{x}v(x) \int_0^x f(t)w(t) dt \Big \Vert_{p(.); (0,N)}+\Big \Vert \frac{1}{x}v(t) \int_0^x f(t)w(t) dt \Big \Vert_{p(.); (N,\infty)} \end{array}$$

For the first summand it follows from the results of the paper [10] (for α = 0 therein) that it may be estimated as

1xv(x)0xf(t)w(t)dtp(.);(0,N)C1fp;(0,N)1 $$\begin{array}{} \displaystyle \Big \Vert \frac{1}{x}v(x)\int_0^x f(t)w(t) dt \Big \Vert_{p(.); (0,N)}\leq C_1 \big \Vert f \big \Vert_{p; (0,N)} \leq 1 \end{array}$$

since an integration interval (0, N) is finite in this part and condition (2) is satisfied.

Now, we pass to an estimation for a second summand in (9), i.e. we get an estimate for the term i = x10xf(t)dtLp(.)(N,). $\begin{array}{} \left\Vert x^{-1}\int\limits_{0}^{x}f(t)dt\right\Vert_{L^{p(.)}(N,\infty )}. \end{array}$ By using Minkowski’s inequality for p(.)-norms, it follows that,

x1v(x)0xf(t)w(t)dtLp(.)(N,)=x1v(x)0xf(t)χt>N(t)w(t)dtLp(.)(N,)+x1v(x)0Nf(t)w(t)dtLp(.)(N,). $$\begin{array}{} \begin{split} \displaystyle \left\Vert x^{-1}v(x)\int\limits_{0}^{x}f(t)w(t)dt\right\Vert _{L^{p(.)}(N,\infty )}&=&\left\Vert x^{-1}v(x)\int\limits_{0}^{x}f(t)\chi _{\left\{ t \gt N\right\}}(t)w(t)dt\right\Vert _{L^{p(.)}(N,\infty )}\notag \\ & +&\left\Vert x^{-1}v(x)\int\limits_{0}^{N}f(t)w(t)dt\right\Vert _{L^{p(.)}(N,\infty )}. \end{split} \end{array}$$

Since p > 1 and ∥fp(.) ≤ 1 it follows that

0Nf(t)dtfp(.)χ0<t<Np(.)χ0<t<Np(.)N1(p+). $$\begin{array}{} \displaystyle \int\limits_{0}^{N}f(t)dt\leq \left\Vert f\right\Vert _{p(.)}\left\Vert \chi _{\left\{ 0 \lt t \lt N\right\} }\right\Vert _{p^{\prime }(.)}\leq \left\Vert \chi _{\left\{ 0 \lt t \lt N\right\} }\right\Vert _{p^{\prime }(.)}\leq N^{\frac{1}{(p^+)^\prime}}. \end{array}$$

Whence

x1v(x)0Nf(t)w(t)dtLp(.)(N,)χ0<t<Np(.)x1Lp(.)(N,)C9(N,p+,p()) $$\begin{array}{c} \displaystyle \left\Vert x^{-1}v(x)\int\limits_{0}^{N}f(t)w(t)dt\right\Vert _{L^{p(.)}(N,\infty)}\\ \displaystyle\leq \left\Vert \chi _{\left\{ 0 \lt t \lt N\right\} }\right\Vert _{p^{\prime}(.)}\left\Vert x^{-1}\right\Vert _{L^{p(.)}(N,\infty )}\leq C_{9}(N,p^{+},p(\infty)) \end{array}$$

since p(∞) > 1,

Ip(.)t1χ(N,)(t)=Ndttp(t)Ndttp()=N1p()p()1 $$\begin{array}{} \displaystyle I_{p(.)} \left( t^{-1} \chi_{(N, \infty)} (t) \right ) =\int_N^\infty \frac{dt}{t^{p(t)}}\leq \int_N^\infty \frac{dt}{t^{p(\infty)}} =\frac{N^{1-p(\infty)}}{p(\infty)-1} \end{array}$$

and therefore,

x1Lp(.)(n,)N1p()p()(p()1)1p(). $$\begin{array}{} \displaystyle \left\Vert x^{-1}\right\Vert _{L^{p(.)}(n,\infty )}\leq N^{\frac{1-p(\infty)}{p(\infty)}}(p(\infty)-1)^{-\frac{1}{p(\infty)}}. \end{array}$$

Thus, in order to get an estimation for i it suffices to estimate

x1v(t)0xf(u)χt>N(t)w(t)dtLp(.)(N,). $$\begin{array}{} \displaystyle \left\Vert x^{-1}v(t)\int\limits_{0}^{x}f(u)\chi _{\left\{ t \gt N\right\} }(t)w(t)dt\right\Vert _{L^{p(.)}(N,\infty )}\text{.} \end{array}$$

We have

x1v(x)Nxf(t)w(t)dtLp(.)(N,)x1n=0v(x)2n1x2nxf(t)χt>N(t)w(t)dtLp(.)(N,)n=0x1v(x)2n1x2nxf(t)χt>N(t)w(t)dtLp(.)(N,). $$\begin{array}{c} \displaystyle \left\Vert x^{-1}v(x)\int\limits_{N}^{x}f(t)w(t)dt\right\Vert _{L^{p(.)}(N,\infty )}\leq \left\Vert x^{-1}\sum\limits_{n=0}^{\infty }v(x)\int\limits_{2^{-n-1}x}^{2^{-n}x}f(t)\chi _{\left\{ t \gt N\right\} }(t)w(t)dt\right\Vert _{L^{p(.)}(N,\infty )}\\ \displaystyle\leq \sum\limits_{n=0}^{\infty }\left\Vert x^{-1}v(x)\int\limits_{2^{-n-1}x}^{2^{-n}x}f(t)\chi _{\left\{ t \gt N\right\} }(t)w(t)dt\right\Vert _{L^{p(.)}(N,\infty )}. \end{array}$$

We shall estimate every summand on the right hand side. By using Lemma 2.3 for N < t < x < ∞, it follows that x1p(x)C72nδt1p(t). $\begin{array}{} \displaystyle x^{-\frac{1 }{p^{\prime }(x)}}\leq C_{7}2^{-n\delta }t^{-\frac{1}{p^{\prime }(t)}}. \end{array}$ Therefore

x1p(x)x1p(x)2n1x2nxf(t)χt>N(t)dtC72nδx1p(x)t1p(x)2n1x2nxf(t)χt>N(t)dt . $$\begin{array}{c} \displaystyle x^{-\frac{1}{p(x)}}x^{-\frac{1}{p^{\prime }(x)}}\int \limits_{2^{-n-1}x}^{2^{-n}x}f(t)\chi _{\left\{ t \gt N\right\} }(t)dt \\ \displaystyle\leq C_{7}2^{-n\delta }x^{-\frac{1}{p(x)}}t^{-\frac{1}{p^{\prime }(x)} }\int\limits_{2^{-n-1}x}^{2^{-n}x}f(t)\chi _{\left\{ t \gt N\right\} }(t)dt \text{ .} \end{array}$$

By using Hölder’s inequality for p(x) -norms and assumption (8), we get

2n1x2nxf(t)χt>N(t)dtC0f(t)χt>N(t)Lp(.)(2n1x,2nx)×χt>N(.)Lp(.)(2n1x,2nx)χt>N(.)Lp(.)(2n1x,2nx). $$\begin{array}{c} \displaystyle \int\limits_{2^{-n-1}x}^{2^{-n}x}f(t)\chi _{\left\{ t \gt N\right\} }(t)dt\\ \displaystyle\leq C_{0}\left\Vert f(t)\chi _{\left\{ t \gt N\right\} }(t)\right\Vert _{L^{p(.)}(2^{-n-1}x,2^{-n}x)} \times \left\Vert \chi _{\left\{ t \gt N\right\} }(.)\right\Vert _{L^{p^{\prime }(.)}(2^{-n-1}x,2^{-n}x)} \\ \displaystyle\leq \left\Vert \chi _{\left\{ t \gt N\right\} }(.)\right\Vert _{L^{p^{\prime }(.)}(2^{-n-1}x,2^{-n}x)}. \end{array}$$

Lemma 3.1

There exists a positive constant C9 > 1 depending on C2, p+, p(∞), such that

χt>N(.)χ(2n1x,2nx)(.)Lp(.)C9y1p(y),y(2n1x,2nx) $$\begin{array}{} \displaystyle \left\Vert \chi _{\left\{ t \gt N(.)\right\} }\chi_{(2^{-n-1}x,2^{-n}x)}(.)\right\Vert _{L^{p^{\prime }(.)}}\leq C_{9}y^{\frac{1}{p^{\prime }(y)}}, \quad \forall y\in (2^{-n-1}x, 2^{-n}x) \end{array}$$

for x > N.

Proof

We prove estimation (13) from the opposite. Let inequality (13) be violated. We show that a contradiction occurs. Let

χt>N(.)χ(2n1x,2nx)(.)Lp(.)>C9y1p(y). $$\begin{array}{} \displaystyle \left\Vert \chi_{\left \{ t \gt N \right \} } (.) \chi_{(2^{-n-1}x,2^{-n}x)}(.)\right\Vert _{L^{p^\prime(.)}} \gt C_{9}\, y^{\frac{1}{p^{\prime }(y)}}. \end{array}$$

From the definition of p(.)-norms, it follows that for any sufficiently small δ > 0 the inequality holds

2n1x2nx1χt>N(.)χ(2n1x,2nx)(.)Lp(.)δp(t)dt>1 . $$\begin{array}{} \displaystyle \int\limits_{2^{-n-1}x}^{2^{-n}x}\left( \frac{1}{\left\Vert \chi_{\left \{ t \gt N \right \} } (.) \chi_{(2^{-n-1}x,2^{-n}x)}(.)\right\Vert _{L^{p^\prime(.)}}-\delta }\right) ^{p^{\prime }(t)}dt \gt 1 \text{ .} \end{array}$$

Indeed, if (15) does not hold, we get a contradiction, that is,

χt>N(.)χ(2n1x,2nx)(.)Lp(.) $$\begin{array}{} \displaystyle \left\Vert \chi_{\left \{ t \gt N \right \} } (.) \chi_{(2^{-n-1}x,2^{-n}x)}(.)\right\Vert _{L^{p^\prime(.)}} \end{array}$$

is a list number satisfying

2n1x2nx1λp(t)dt1. $$\begin{array}{} \displaystyle \int\limits_{2^{-n-1}x}^{2^{-n}x}\left( \frac{1}{\lambda }\right) ^{p^{\prime }(t)}dt\leq 1\text{.} \end{array}$$

We set δ=12χt>N(.)χ(2n1x,2nx)(.)Lp(.) $\begin{array}{} \displaystyle \delta =\frac{1}{2}\left\Vert \chi_{\left \{ t \gt N \right \} } (.) \chi_{(2^{-n-1}x,2^{-n}x)}(.)\right\Vert _{L^{p^\prime(.)}} \end{array}$ in (15), to get

2n1x2nx2χt>N(.)χ(2n1x,2nx)(.)Lp(.)p(t)dt>1 . $$\begin{array}{} \displaystyle \int\limits_{2^{-n-1}x}^{2^{-n}x}\left( \frac{2}{\left\Vert \chi_{\left \{ t \gt N \right \} } (.) \chi_{(2^{-n-1}x,2^{-n}x)}(.)\right\Vert _{L^{p^\prime(.)}}}\right) ^{p^{\prime }(t)}dt \gt 1 \text{ .} \end{array}$$

By applying here (14), it follows that

2n1x2nx2C9y1p(y)p(t)dt>1,y(2n1x,2nx),x>N. $$\begin{array}{} \displaystyle \int\limits_{2^{-n-1}x}^{2^{-n}x}\left( \frac{2}{C_{9}\, y^{\frac{1}{p^{\prime }(y)}}} \right) ^{p^{\prime }(t)}dt \gt 1, \quad \forall y\in (2^{-n-1}x, 2^{-n}x), \quad x \gt N. \end{array}$$

For any points t, y lying in (2n–1x, 2nx) it follows from Lemma 2.1 that y1p(y) $\begin{array}{} \displaystyle y^{\frac{1}{p^{\prime }(y)}} \end{array}$ is comparable with t1p(t). $\begin{array}{} \displaystyle t^{\frac{1}{p^{\prime }(t)}}. \end{array}$ This means, there exist two positive constants C10, C11 depending on C2, p+ such that

C10t1p(t)y1p(y)C11t1p(t). $$\begin{array}{} \displaystyle C_{10} t^{\frac{1}{p^{\prime }(t)}}\leq y^{\frac{1}{p^{\prime }(y)}}\leq C_{11}t^{\frac{1}{p^{\prime }(t)}}. \end{array}$$

Therefore,

2n1x2nx2C10C9t1p(t)p(t)dt>1,x>N . $$\begin{array}{} \displaystyle \int\limits_{2^{-n-1}x}^{2^{-n}x}\left( \frac{2}{C_{10}C_{9}t^{\frac{1}{p^{\prime }(t)}}} \right) ^{p^{\prime }(t)}dt \gt 1, \quad x \gt N\text{ .} \end{array}$$

Whence

2(p)ln2(C10C9)(p+)1. $$\begin{array}{} \displaystyle \frac{2(p^{-})^{\prime }\ln 2}{(C_{10}C_{9})^{(p^{+})^{\prime }}}\geq 1\text{.} \end{array}$$

By choosing constant C9 sufficiently large, we get a contradiction with (16). This proves estimate (13). Thus we have proved that

2n1x2nxftχt>N(t)dtC9y1p(y),y(2n1x,2nx),x>N . $$\begin{array}{} \displaystyle \int\limits_{2^{-n-1}x}^{2^{-n}x} f\left( t\right) \chi _{\left\{ t \gt N\right\} }(t)dt\leq C_{9}\, y^{\frac{1}{p^{\prime }(y)}},\quad \forall y\in ( 2^{-n-1}x, 2^{-n}x), \quad x \gt N\text{ .} \end{array}$$

This proves Lemma 3.1.

Now, we shall derive an estimate for

1xv(x)2n1x2nxftχt>N(t)w(t)dtLp(N,). $$\begin{array}{} \displaystyle \left\Vert \frac{1}{x} v(x)\int\limits_{2^{-n-1}x}^{2^{-n}x}f\left( t\right) \chi _{\left\{ t \gt N\right\} }(t)w(t)dt\right\Vert _{L^{p}(N,\infty )}. \end{array}$$

In order to carry out it, we get an estimation for the proper modular

Ip(.):(N,)1xv(t)2n1x2nxftχt>N(t)w(t)dt=Ip(.):(N,)x1p(x)x1p(x)v(x)2n1x2nxftχt>M(t)w(t)dt $$\begin{array}{c} \displaystyle I_{p(.):(N,\infty )}\left( \frac{1}{x} v(t)\int\limits_{2^{-n-1}x}^{2^{-n}x}f\left( t\right) \chi _{\left\{ t \gt N\right\} }(t)w(t)dt\right)\\ \displaystyle=I_{p(.):(N,\infty )}\left( x^{- \frac{1}{p(x)}}x^{-\frac{1}{p^{\prime }(x)}}v(x)\int \limits_{2^{-n-1}x}^{2^{-n}x}f\left( t\right) \chi _{\left\{ t \gt M\right\} }(t)w(t)dt\right) \end{array}$$

It follows from Lemma 2.3 that

x1p(x)C72nεt1p(t) $$\begin{array}{} \displaystyle x^{-\frac{1}{p^{\prime }(x)}}\leq C_{7}2^{-n\varepsilon }t^{-\frac{1}{p^{\prime }(t)}} \end{array}$$

for ∀y, t ∈ (2n–1x, 2nx) and x > N. By using the last estimate the expression (18) is exceeded

NC72nδy1p(y)v(x)2n1x2nxftχt>N(t)w(t)dtp(x)dxx=NC7p(x)2np(x)δyp(x)p(y)v(x)2n1x2nxftχt>N(t)w(t)dtC7t1p(t)p(x)C11t1p(t)p(x)dxx. $$\begin{array}{c} \displaystyle \int\limits_{N}^{\infty }\left( C_{7}2^{-n\delta }y^{-\frac{1}{ p^{\prime }(y)}}v(x)\int\limits_{2^{-n-1}x}^{2^{-n}x}f\left( t\right) \chi _{\left\{ t \gt N\right\} }(t)w(t)dt\right) ^{p(x)}\frac{dx}{x} \\ \displaystyle=\int\limits_{N}^{\infty }C_{7}^{p(x)}2^{-np(x)\delta }y^{-\frac{p(x) }{p^{\prime }(y)}}\left( \frac{v(x)\int\limits_{2^{-n-1}x}^{2^{-n}x}f\left( t\right) \chi _{\left\{ t \gt N\right\} }(t)w(t)dt}{C_{7}t^{\frac{1}{p^{\prime }(t)}} }\right) ^{p(x)}\left( C_{11}t^{\frac{1}{p^{\prime }(t)}}\right) ^{p(x)}\frac{ dx}{x}. \end{array}$$

By applying here Lemma 2.1, we get that, the term yp(x)p(y) $\begin{array}{} \displaystyle y^{-\frac{p(x) }{p^{\prime }(y)}} \end{array}$ is comparable with tp(x)p(t) $\begin{array}{} \displaystyle t^{-\frac{p(x) }{p^{\prime }(t)}} \end{array}$ in the integral terms, i.e.

y1p(y)t1p(t)p+C12for allt,ylying in(2n1x,2nx). $$\begin{array}{} \displaystyle \left (y^{-\frac{1 }{p^{\prime }(y)}}\cdot t^{\frac{1 }{p^{\prime }(t)}}\right) ^{p^+}\leq C_{12} \quad \text{for all}~ t,y ~ \text{lying in} ~(2^{-n-1}x, 2^{-n}x). \end{array}$$

By a use of (13) a parentheses term in the preceding integral is less than 1. By decreasing the power p(x) on the power of parentheses to px,n, $\begin{array}{} \displaystyle p_{x,n}^{-}, \end{array}$ we will increase the fraction. Then the last expression is less then

C122nδpMv(x)2n1x2nxftχt>M(t)w(t)dtC7t1p(t)px,ndxxC122nδpNv(x)2n1x2nxftχt>N(t)w(t)dtC9t1p(t)px,ndxx. $$\begin{array}{} \begin{split} \displaystyle &&C_{12}2^{-n\delta p^{-}}\int\limits_{M}^{\infty }\left( \frac{v(x)\int\limits_{2^{-n-1}x}^{2^{-n}x}f\left( t\right) \chi _{\left\{ t \gt M\right\} }(t)w(t)dt}{C_{7}t^{\frac{1}{p^{\prime }(t)}}}\right) ^{p_{x,n}^{-}}\frac{dx}{x} \notag \\ &\leq &C_{12}2^{-n\delta p^{-}}\int\limits_{N}^{\infty }\left( \frac{v(x)\int \limits_{2^{-n-1}x}^{2^{-n}x}f\left( t\right) \chi _{\left\{ t \gt N\right\} }(t)w(t)dt}{C_{9}t^{\frac{1}{p^{\prime }(t)}}}\right) ^{p_{x,n}^{-}}\frac{dx}{x}. \end{split} \end{array}$$

Using Holder’s inequality, it follows that

v(x)2n1x2nxftχt>N(t)w(t)dtv(x)2n1x2nxftpx,nχt>N(t)w(t)dt1px,n2n1x1px,n $$\begin{array}{c} \displaystyle v(x)\int\limits_{2^{-n-1}x}^{2^{-n}x}f\left( t\right) \chi _{\left\{ t \gt N\right\} }(t)w(t)dt \\ \displaystyle\leq \left( v(x)\int\limits_{2^{-n-1}x}^{2^{-n}x}f\left( t\right) ^{p_{x,n}^{-}}\chi _{\left\{ t \gt N\right\} }(t)w(t)dt\right) ^{\frac{1}{ p_{x,n}^{-}}}\left( 2^{-n-1}x\right) ^{^{\frac{1}{\left( p_{x,n}^{-}\right) ^{\prime }}}} \end{array}$$

with xN2n+1. By inserting this in the interior integral (19), that is exceeded by

C122nδpNv(x)2n1x2nxftpx,nχt>N(t)w(t)dt2n1xpx,npx,ntpx,np(t)dxx. $$\begin{array}{} \displaystyle C_{12}2^{-n\delta p^{-}}\int\limits_{N}^{\infty }\left( v(x)\int\limits_{2^{-n-1}x}^{2^{-n}x}f\left( t\right) ^{p_{x,n}^{-}}\chi _{\left\{ t \gt N\right\} }(t)w(t)dt\right) \left( 2^{-n-1}x\right) ^{^{\frac{ p_{x,n}^{-}}{\left( p_{x,n}^{-}\right) ^{\prime }}}}t^{-\frac{p_{x,n}^{-}}{ p^{\prime }(t)}}\frac{dx}{x}. \end{array}$$

Since 2n–1xt and by using Lemma 2.4 and Lemma 2.1, it follows that, the last expression is exceeded by

N1xv(x)2n1x2nxftχt>N(t)w(t)dtp(x)dxC132nδpNv(x)2n1x2nxftpx,nχt>N(t)w(t)dtdxx. $$\begin{array}{} \begin{split} \displaystyle \int\limits_N^\infty \left( \frac{1}{x} v(x)\int\limits_{2^{-n-1}x}^{2^{-n}x} f \left( t\right) \chi _{\left\{ t \gt N\right\} }(t) w(t) dt \right)^{p(x)}dx \notag \\ \leq C_{13}2^{-n\delta p^{-}}\int\limits_{N}^{\infty }\left( v(x)\int\limits_{2^{-n-1}x}^{2^{-n}x}f\left( t\right) ^{p_{x,n}^{-}}\chi _{\left\{ t \gt N\right\} }(t)w(t)dt\right) \frac{dx}{x}. \end{split} \end{array}$$

Now, we estimate the interior integral through Ip(.)(f). The interior integral here is exceeded

Bx,nt:f(t)>11+t2ftχt>N(t)11+t2px,n11+t2px,ndt+Bx,nt:f(t)11+t2f(t)px,ndtBx,nftχt>N(t)11+t2p(t)11+t2px,ndt+Bx,nχt>N(t)1+t2px,ndtBx,nftp(t)1+t2p(t)px,nχt>N(t)dt+Bx,nχt>N(t)1+t2px,ndtC14Bx,nftp(t)χt>N(t)dt+Bx,nχt>N(t)1+t2dt;Bx,n=(2n1x,2nx) $$\begin{array}{c} \displaystyle \int\limits_{B_{x,n}\cap \left\{ t:f(t) \gt \frac{1}{1+t^{2}}\right\} }\left( \frac{f\left( t\right) \chi _{\left\{ t \gt N\right\} }(t)}{\frac{1}{1+t^{2}}} \right) ^{p_{x,n}^{-}}\left( \frac{1}{1+t^{2}}\right) ^{p_{x,n}^{-}}dt\\ \displaystyle+ \int\limits_{B_{x,n}\cap \left\{ t:f(t)\leq \frac{1}{1+t^{2}}\right\} }\left( f(t)\right) ^{p_{x,n}^{-}}dt \\ \displaystyle\leq \int\limits_{B_{x,n}}\left( \frac{f\left( t\right) \chi _{\left\{ t \gt N\right\} }(t)}{\frac{1}{1+t^{2}}}\right) ^{p(t)}\left( \frac{1}{1+t^{2}} \right) ^{p_{x,n}^{-}}dt+\int\limits_{B_{x,n}}\left( \frac{\chi _{\left\{ t \gt N\right\} }(t)}{1+t^{2}}\right) ^{p_{x,n}^{-}}dt\\ \displaystyle\leq \int\limits_{B_{x,n}}\left( f\left( t\right) \right) ^{p(t)}\left( 1+t^{2}\right) ^{p(t)-p_{x,n}^{-}}\chi _{\left\{ t \gt N\right\} }(t)dt+\int\limits_{B_{x,n}}\left( \frac{\chi _{\left\{ t \gt N\right\} }(t)}{ 1+t^{2}}\right) ^{p_{x,n}^{-}}dt\\ \displaystyle\leq C_{14}\int\limits_{B_{x,n}}f\left( t\right) ^{p(t)}\chi _{\left\{ t \gt N\right\} }(t)dt+\int\limits_{B_{x,n}}\left( \frac{\chi _{\left\{ t \gt N\right\} }(t)}{1+t^{2}}\right) dt; \quad B_{x,n}=(2^{-n-1}x, 2^{-n}x) \end{array}$$

since the assumption (2) is made using (4) from Lemma 2.1 and px,n1, $\begin{array}{} \displaystyle p_{x,n}^{-}\geq 1 , \end{array}$ it follows that

1+t2p(t)px,nC15. $$\begin{array}{} \displaystyle \left( 1+t^{2}\right)^{p(t)-p_{x,n}^-}\leq C_{15}. \end{array}$$

Evidently, 11+t2px,n11+t2. $\begin{array}{} \displaystyle \left( \frac{1}{1+t^{2}}\right) ^{p_{x,n}^{-}}\leq \frac{1}{1+t^{2}}. \end{array}$ Therefore, we get an estimate

Bx,nftpx,nχt>N(t)dtC15Bx,nftp(t)χt>N(t)dt+Bx,nχt>N(t)1+t2dt. $$\begin{array}{} \displaystyle \int\limits_{B_{x,n}}\left( f\left( t\right) \right) ^{p_{x,n}^{-}}\chi _{\left\{ t \gt N\right\} }(t)dt\leq C_{15}\int\limits_{B_{x,n}}f\left( t\right) ^{p(t)}\chi _{\left\{ t \gt N\right\} }(t)dt+\int\limits_{B_{x,n}}\left( \frac{ \chi _{\left\{ t \gt N\right\} }(t)}{1+t^{2}}\right) dt . \end{array}$$

Inserting this inequality in (20) and applying Fubini’s therom, it follows that

Ip(.),(N,)1xv(x)Bn,xftχt>N(t)w(t)dtC152nδpNv(x)2n1x2nxftp(t)χt>N(t)w(t)dt+v(x)Bx,nχt>N(t)1+t2w(t)dtdxx=C152nδpv(x)2nN2nt2n+1tdxxftp(t)χt>N(t)w(t)dt+v(x)2nM2nt2n+1tdxxχt>N(t)w(t)dt1+t2C152nδpln22nNftp(t)χt>N(t)dt+ln22nMχt>N(t)dt1+t2=C152nδpln2Nftp(t)dt+Ndt1+t2C152nδpln21+π2=C162nδp. $$\begin{array}{c} \displaystyle I_{p(.),(N,\infty )}\left( \frac{1}{x}v(x)\int\limits_{B_{n,x}}f\left( t\right) \chi _{\left\{ t \gt N\right\} }(t)w(t)dt\right)\\ \displaystyle\leq C_{15}2^{-n\delta p^{-}}\int\limits_{N}^{\infty }\left( v(x)\int\limits_{2^{-n-1}x}^{2^{-n}x}f\left( t\right) ^{p(t)}\chi _{\left\{ t \gt N\right\} }(t)w(t)dt+v(x)\int\limits_{B_{x,n}}\left( \frac{\chi _{\left\{ t \gt N\right\} }(t)}{1+t^{2}}\right)w(t) dt\right) \frac{dx}{x}\\ \displaystyle=C_{15}2^{-n\delta p^{-}}v(x)\int\limits_{2^{-n}N}^{\infty }\left( \int\limits_{2^{n}t}^{2^{n+1}t}\frac{dx}{x}\right) f\left( t\right) ^{p(t)}\chi _{\left\{ t \gt N\right\} }(t)w(t)dt+v(x)\int\limits_{2^{-n}M}^{\infty }\left( \int\limits_{2^{n}t}^{2^{n+1}t}\frac{dx}{x}\right) \frac{\chi _{\left\{ t \gt N\right\} }(t)w(t)dt}{1+t^{2}} \\ \displaystyle\leq C_{15}2^{-n\delta p^{-}}\ln 2\left( \int\limits_{2^{-n}N}^{\infty }f\left( t\right) ^{p(t)}\chi _{\left\{ t \gt N\right\} }(t)dt+\ln 2\int\limits_{2^{-n}M}^{\infty }\frac{\chi _{\left\{ t \gt N\right\} }(t)dt}{1+t^{2}}\right)\\ \displaystyle=C_{15}2^{-n\delta p^{-}}\ln 2\left( \int\limits_{N}^{\infty }f\left( t\right) ^{p(t)}dt+\int\limits_{N}^{\infty }\frac{dt}{1+t^{2}}\right) \leq C_{15}2^{-n\delta p^{-}}\ln 2\left( 1+\frac{\pi}{2 }\right) =C_{16}2^{-n\delta p^{-}}. \end{array}$$

Whence,

Ip(.),(N,)1xv(x)Bn,xftχt>N(t)w(t)dtC162nδp. $$\begin{array}{} \displaystyle I_{p(.),(N,\infty )}\left( \frac{1}{x}v(x)\int\limits_{B_{n,x}}f\left( t\right) \chi _{\left\{ t \gt N\right\} }(t)w(t)dt\right) \leq C_{16}2^{-n\delta p^{-}}. \end{array}$$

From this it follows that

1xv(x)2n1x2nxftp(t)χt>N(t)w(t)dtLp(N,)C172nδpp+. $$\begin{array}{} \displaystyle \left\Vert \frac{1}{x}v(x)\int\limits_{2^{-n-1}x}^{2^{-n}x}f\left( t\right) ^{p(t)}\chi _{\left\{ t \gt N\right\} }(t)w(t)dt\right\Vert _{L^{p}(N,\infty )}\leq C_{17}2^{-\frac{n\delta p^{-}}{p^{+}}}. \end{array}$$

Inserting (23) in (12), we get

x1v(x)NxfxdxLp(.)(N,)n=1C172nδpp+=C18. $$\begin{array}{} \displaystyle \left\Vert x^{-1}v(x)\int\limits_{N}^{x}f\left( x\right) dx\right\Vert _{L^{p(.)}(N,\infty )}\leq \sum\limits_{n=1}^{\infty }C_{17}2^{-\frac{ n\delta p^{-}}{p^{+}}}=C_{18}. \end{array}$$

Further, substitute this estimate and (11) into (10), we complete the proof of the sufficiency part of Theorem 1.1.

Necessity

Let us note, for an increasing near origin exponent functions p(.) it was proved in [19] that a necessity condition for inequality (1) to hold in the class of measurable positive functions f with support in finite interval (0, N) is the same condition (2) over the points b ∈ (0, N) (observe not over all axes (0, ∞)).To finish the necessity in Theorem 1.1 it remains to get this condition over the points b > N, where we shall essentially use the decreasing of exponent near infinity.

Below, we shall prove the necessity of condition (2) over points x > N for decreasing near infinity exponent functions. We insert a function

f0(x)=x1p(x)χ(b,2b)(x),x>N $$\begin{array}{} \displaystyle f_0(x)=x^{-\frac{1}{p(x)}} \chi_{(b,2b)}(x), \quad x \gt N \end{array}$$

into inequality (1.2) with a parameter b > N be fixed. It is clear that, Ip(.) (f0) = ln 2. It follows from the inequality (1) that

Ip(.)1xbxf0(x)dxC19. $$\begin{array}{} \displaystyle I_{p(.)} \left ( \frac{1}{x} \int_b^x f_0 (x)dx \right ) \leq C_{19}. \end{array}$$

From this it follows

2b4bx1p(x)b2bt1p(t)dtp(x)dxxC19. $$\begin{array}{} \displaystyle \int_{2b}^{4b} \left(x^{ -\frac{1}{p^\prime(x)}} \int_b^{2b} t^{-\frac{1}{p(t)}}dt\right)^{p(x)}\frac{dx}{x}\leq C_{19}. \end{array}$$

By monotony of p in (N, ∞) it follows the functions x1p(x) $\begin{array}{} \displaystyle x^{-\frac{1}{p^\prime(x)}} \end{array}$ and t1p(t) $\begin{array}{} \displaystyle t^{-\frac{1}{p(t)}} \end{array}$ are decreasing therein. This yields

x1p(x)(4b)1p(4b),2b<x<4b $$\begin{array}{} \displaystyle x^{-\frac{1}{p^\prime(x)}}\geq (4b)^{-\frac{1}{p^\prime(4b)}}, ~ 2b \lt x \lt 4b \end{array}$$

and

t1p(t)(2b)1p(2b),b<t<2b. $$\begin{array}{} \displaystyle t^{-\frac{1}{p(t)}}\geq (2b)^{-\frac{1}{p(2b)}}, ~ b \lt t \lt 2b. \end{array}$$

By taking into account this inequalities, it follows from (24) that

2b4b((4b)1p(4b)(2b)1p(2b))p(x)dxxC19. $$\begin{array}{} \displaystyle \int_{2b}^{4b}\Big( (4b)^{-\frac{1}{p^\prime(4b)}}(2b) ^{\frac{1}{p^\prime(2b)}}\Big)^{p(x)}\frac{dx}{x}\leq C_{19}. \end{array}$$

This inequality yields

(12(2b)1p(2b)1p(4b))pln2C19 $$\begin{array}{} \displaystyle \Big( \frac{1}{2}(2b)^{\frac{1}{p^\prime(2b)}-\frac{1}{p^\prime(4b)}}\Big)^{p^-}\ln2 \leq C_{19} \end{array}$$

if the parenthesis term is greater 1. If not, we have

12(2b)1p(2b)1p(4b)1, $$\begin{array}{} \displaystyle \frac{1}{2}(2b)^{\frac{1}{p^\prime(2b)}-\frac{1}{p^\prime(4b)}}\leq 1, \end{array}$$

i.e. it follows that

(2b)1p(2b)1p(4b)C20, $$\begin{array}{} \displaystyle (2b)^{\frac{1}{p^\prime(2b)}-\frac{1}{p^\prime(4b)}}\leq C_{20}, \end{array}$$

or

(2b)p(2b)p(4b)p(2b)p(4b)C20. $$\begin{array}{} \displaystyle (2b)^{\frac{p(2b)-p(4b)}{p(2b)p(4b)}}\leq C_{20}. \end{array}$$

Replacing 2b by b, we get the inequality

bp(b)p(2b)p(b)p(2b)C20,b>2N. $$\begin{array}{} \displaystyle b^{\frac{p(b)-p(2b)}{p(b)p(2b)}}\leq C_{20}, \quad b \gt 2N. \end{array}$$

Whence,

bp(b)p(2b)C21,C21=C20(p+)2,b>2N, $$\begin{array}{} \displaystyle b^{p(b)-p(2b)}\leq C_{21}, \quad C_{21}=C_{20}^{(p^+)^2}, \quad b \gt 2N, \end{array}$$

or

[p(b)p(2b)]lnbC22,C22=(p+)2lnC21. $$\begin{array}{} \displaystyle \big [p(b)-p(2b)\big ] \ln b \leq C_{22}, \quad C_{22}=(p^+)^2\ln C_{21}. \end{array}$$

Now, having property (25) and using inequality (1), we shall derive condition (2) for b > N, too. In connection, we need some assertions below, e.g. following lemma is similar to those in [10].

Lemma 3.2

For any 12x $\begin{array}{} \displaystyle \frac{1}{2}x \end{array}$ < y < 2x with x > N the estimates

C23x1p(x)y1p(y)C24x1p(x) $$\begin{array}{} \displaystyle C_{23}x^{-\frac{1}{p^\prime(x)} }\leq y^{-\frac{1}{p^\prime(y)} } \leq C_{24} x^{-\frac{1}{p^\prime(x)} } \end{array}$$

are satisfied with positive constants C23, C24 depending on C22.

Proof

By using estimate (25) and decreasing of 1p(x), $\begin{array}{} \displaystyle \frac{1}{p^\prime(x)}, \end{array}$ it follows that

y1p(y)x21p(y)x1p(x)1p(2x)x1p(x)21p(N)2xp(x)p(2x)x1p(x)2C21x1p(x). $$\begin{array}{c} \displaystyle y^{-\frac{1}{p^\prime(y)} }\leq \left( \frac{x}{2}\right)^{-\frac{1}{p^\prime(y)}} \leq x^{\frac{1}{p^\prime(x)}-\frac{1}{p^\prime(2x)}}\cdot x^{-\frac{1}{p^\prime(x)}}2^{\frac{1}{p^\prime(N)}}\\ \displaystyle\leq 2x^{p(x)-p(2x)}\cdot x^{-\frac{1}{p^\prime(x)}}\leq 2C_{21} x^{-\frac{1}{p^\prime(x)}}. \end{array}$$

By the same way,

x1p(x)y21p(x)y1p(y)1p(2y)y1p(y)21p(N)2yp(y)p(2y)y1p(y)2C21y1p(y). $$\begin{array}{c} \displaystyle x^{-\frac{1}{p^\prime(x)} }\leq \left( \frac{y}{2}\right)^{-\frac{1}{p^\prime(x)}} \leq y^{\frac{1}{p^\prime(y)}-\frac{1}{p^\prime(2y)}}\cdot y^{-\frac{1}{p^\prime(y)}}2^{\frac{1}{p^\prime(N)}}\\ \displaystyle\leq 2y^{p(y)-p(2y)}\cdot y^{-\frac{1}{p^\prime(y)}}\leq 2C_{21} y^{-\frac{1}{p^\prime(y)}}. \end{array}$$

This proves Lemma 3.2.

Lemma 3.3

The function x1p(x) $\begin{array}{} \displaystyle x^{-\frac{1}{p^\prime(x)}} \end{array}$ almost decreases on (N, ∞).

Proof

Take any N < t1t2 < ∞, we show that there exists a constant C25 > 1 depending on the constant C2 of inequality (1) and p+ such that

t21p(t2)C25t11p(t1). $$\begin{array}{} \displaystyle t_2^{-\frac{1}{p^\prime(t_2)}}\leq C_{25} t_1^{-\frac{1}{p^\prime(t_1)}}. \end{array}$$

We fix any t1 = b > 2N and choose nN such that 2n–1a < t2 ≤ 2nb. Then

C22b(x1p(x)b2bt1p(t)dt)p(x)dxx $$\begin{array}{} \displaystyle C_{2}\geq \int_{2b}^\infty \Big( x^{-\frac{1}{p^\prime(x)}} \int_b^{2b} t^{-\frac{1}{p(t)}}dt \Big)^{p(x)}\frac{dx}{x} \end{array}$$

k=12k1b2kb(x1p(x)b2bt1p(t)dt)p(x)dxx, $$\begin{array}{} \displaystyle \geq \sum_{k=1}^\infty\int_{2^{k-1}b}^{2^kb}\Big(x^{-\frac{1}{p(x)}}\int_b^{2b}t^{-\frac{1}{p(t)}}dt\Big)^{p(x)}\frac{dx}{x}, \end{array}$$

by using Lemma 3.2,

k=12k1b2kb[C241b1p(b)x1p(x)]p(x)C24pdxx, $$\begin{array}{} \displaystyle \geq\sum_{k=1}^\infty\int_{2^{k-1}b}^{2^kb}\Big [C_{24}^{-1}b^{\frac{1}{p^\prime(b)}}x^{-\frac{1}{p^\prime(x)}}\Big]^{p(x)}C_{24}^{p^-}\frac{dx}{x}, \end{array}$$

by using Lemma 3.2, we obtain

k=12k1b2kb[C241b1p(b)(2kb)1p(2kb)]p(x)C24pdxxkN[C241b1p(b)(2kb)1p(2kb)]p+C24pln2+kN[C241b1p(b)(2kb)1p(2kb)]pC24pln2, $$\begin{array}{c} \displaystyle \geq\sum_{k=1}^\infty\int_{2^{k-1}b}^{2^kb}\Big [C_{24}^{-1}b^{\frac{1}{p^\prime(b)}}(2^kb)^{-\frac{1}{p^\prime(2^kb)}}\Big]^{p(x)}C_{24}^{p^-}\frac{dx}{x} \\ \displaystyle\geq\sum_{k\in N^\prime}\Big [C_{24}^{-1}b^{\frac{1}{p^\prime(b)}}(2^kb)^{-\frac{1}{p\prime(2^kb)}}\Big]^{p^+}C_{24}^{p^-}\ln2 \\ \displaystyle+\sum_{k\in N^{\prime\prime}}\Big [C_{24}^{-1}b^{\frac{1}{p^\prime(b)}}(2^kb)^{-\frac{1}{p\prime(2^kb)}}\Big]^{p^-}C_{24}^{p^-}\ln2, \end{array}$$

where kN $\begin{array}{} \displaystyle \sum\limits_{k\in N^\prime} \end{array}$ is a summation over kN such that the inequality

b1p(b)(2kb)1p(2kb)1 $$\begin{array}{} \displaystyle b^{\frac{1}{p^\prime{(b)}}}(2^kb)^{-\frac{1}{p^\prime{(2^kb)}}}\leq1 \end{array}$$

holds, and kN $\begin{array}{} \displaystyle \sum \limits_{k \in N^{\prime\prime}} \end{array}$ is a summation of the opposite case. Therefore, for any kN one gets

b1p(b)(2kb)1p(2kb)C25. $$\begin{array}{} \displaystyle b^{\frac{1}{p\prime{(b)}}}(2^kb)^{-\frac{1}{p\prime{(2^kb)}}}\leq C_{25}. \end{array}$$

This yields

t21p(t2)t11p(t1)C26 $$\begin{array}{} \displaystyle t_2^{-\frac{1}{p^\prime(t_2)}}\cdot t_1^{\frac{1}{p^\prime(t_1)}}\leq C_{26} \end{array}$$

i.e. function x1p(x) $\begin{array}{} \displaystyle x^{-\frac{1}{p\prime(x)}} \end{array}$ is almost decreasing. Since x1p(x) $\begin{array}{} \displaystyle x^{-\frac{1}{p\prime(x)}} \end{array}$ is almost decreasing on [N, ∞), we get

C2bC26p[1C26b1p(b)x1p(x)]p+dx $$\begin{array}{} \displaystyle C_{2} \geq\int_b^\infty C_{26}^{p^-}\Big[\frac{1}{C_{26}}b^{\frac{1}{p^\prime(b)}}x^{-\frac{1}{p^\prime(x)}}\Big]^{p^+}dx \end{array}$$

or

bxp+p(x)dxxC27bp+p(b),b>N. $$\begin{array}{} \displaystyle \int_b^\infty x^{-\frac{p^+}{p^\prime(x)}}\frac{dx}{x}\leq C_{27}b^{\frac {p^+} {p^\prime(b)}}, \quad b \gt N. \end{array}$$

Now, let N < t1 < t2 < ∞. We show that condition (26) entails (2). We take any N < t1 < t2 < ∞ and set K(x)=xtp+p(t)dtt,x>N. $\begin{array}{} K(x)=\int_x^\infty t^{-\frac{p^+}{p^\prime(t)}}\frac{dt}{t},\quad x \gt N. \end{array}$ From (26) it follows that

K(x)C27xK(x),N<x<. $$\begin{array}{} \displaystyle K(x)\le -C_{27} x K'(x), \quad N \lt x \lt \infty. \end{array}$$

Integrating this inequality over (t1, t2), for N < t1 < t2 < ∞ and using (26), we get

t21C27K(t2)C27t1p+p(t1)+1C27 $$\begin{array}{} \displaystyle t_2^{\frac{1}{C_{27}}}K(t_2)\le C_{27} t_{1}^{-\frac{p^+}{ p^\prime (t_{1})}+ \frac{1}{C_{27}}} \end{array}$$

On the other hand, by using monotone decreasing of xp+p(x), $\begin{array}{} \displaystyle x^{-\frac{p^+}{p^\prime(x)}}, \end{array}$ the conditions (25) and (26), it follows that

k(t2)t22t2xp+p(x)dxxln212t2p+p(2t2)2p+p(N)ln2t2p+p(t2),t2N. $$\begin{array}{} \displaystyle k(t_{2})\geq \int\limits_{t_{2}}^{2t_{2}}x^{-\frac{p^+}{p^{\prime }(x)}}\frac{ dx}{x}\geq \ln 2 \left( \frac{1}{2t_{2}}\right) ^{\frac{p^+}{p^{\prime}(2t_{2})}}\geq \, 2^{-\frac{p^+}{p'(N)}} \ln 2 ~ t_{2}^{-\frac{p^+}{p^{\prime }( t_{2})}},\quad t_2 \geq N. \end{array}$$

By inserting this in (27) one gets,

t2p+p(t2)+1C27C28t1p+p(t1)+1C27 $$\begin{array}{} \displaystyle t_2^{-\frac{p^+}{p^{\prime }(t_{2})}+\frac{1}{C_{27}}}\le C_{28}t_{1}^{-\frac{ p^+}{p^{\prime }(t_{1})}+\frac{1}{C_{27}}} \end{array}$$

for all N < t1 < t2 < ∞. Whence, the function xδp+p(x) $\begin{array}{} \displaystyle x^{\delta -\frac{p^+}{p^{^{\prime }}(x)}} \end{array}$ is almost decreasing on (N, ∞). Therefore, we have proved that

t21p(t2)+δ1C28t11p(t1)+δ1 $$\begin{array}{} \displaystyle t_{2}^{-\frac{1}{p^{\prime }(t_{2})}+\delta_1 }\leq C_{28}t_{1}^{-\frac{1}{ p^{\prime }(t_{1})}+\delta_1 } \end{array}$$

for all N < t1 < t2 < ∞; a constant δ1=δp+. $\begin{array}{} \displaystyle \delta_1 =\frac{\delta}{p^+}. \end{array}$

Therefore x1p(x)+δ1 $\begin{array}{} \displaystyle x^{-\frac{1}{p^\prime(x)}+\delta_1} \end{array}$ is almost decreasing with δ1=δp+,δ=1C27. $\begin{array}{} \displaystyle \delta_1=\frac{\delta }{ p^+}, \, \delta=\frac{1}{C_{27}}. \end{array}$ From this it follows

bx1p(x)dxxC28abδ1p(x)dxx1+δC28bδ1p(b)bdxx1+δ=C28δb1p(a),b>N $$\begin{array}{c} \displaystyle \int_b^\infty x^{-\frac{1}{p^\prime(x)}}\frac{dx}{x}\leq C_{28}\int_a^\infty b^{\delta-\frac{1}{p^\prime(x)}}\frac{dx}{x^{1+\delta}} \\ \displaystyle\leq C_{28}b^{\delta-\frac{1}{p^\prime(b)}}\int_b^\infty\frac{dx}{x^{1+\delta}}=\frac{C_{28}}{\delta}b^{-\frac{1}{p^\prime(a)}}, \quad b \gt N \end{array}$$

This proves the necessity of condition (2) near infinity.

Conclusion

A new method of weighted increasing near origin and decreasing near infinity exponent function that provides a boundedness of the Hardy’s operator in variable exponent Lebesgue space was obtained. The method we use here leads us to the most general sense. We don’t have to work in a particular interval. This method can be applied to different operators. And this method brings important facilities in the study of operator theory.

eISSN:
2444-8656
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics