À propos de cet article

Citez

Abou-Elela, S. I., Elekhnawy, M. A., Khalil, M. T. & Hella, M. S. (2017). Factors Affecting the Performance of Horizontal Flow Constructed Treatment Wetland Vegetated with Cyperus papyrus for Municipal Wastewater Treatment. International Journal of Phytoremediation, 19 (11), 1023–1028. https://doi.org/10.1080/15226514.2017.131932710.1080/15226514.2017.1319327 Search in Google Scholar

Akpor, O. B., Adelani-Akande, T. A. & Aderiye, B. I. (2013). The effect of temperature on nutrient removal from wastewater by selected fungal species. International Journal of Current Microbiology and Applied Sciences, 2 (9), 328–340. Search in Google Scholar

Akratos, C. S. & Tsihrintzis, V. A. (2007). Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecological Engineering, 29 (2), 173–191. https://doi.org/10.1016/j.ecoleng.2006.06.01310.1016/j.ecoleng.2006.06.013 Search in Google Scholar

Al-Baldawi, I. A., Abdullah, S. R. S., Suja, F., Anuar, N. & Mushrifah, I. (2013). Effect of aeration on hydrocarbon phytoremediation capability in pilot sub-surface flow constructed wetland operation. Ecological Engineering, 61, 496–500. https://doi.org/10.1016/j.ecoleng.2013.10.01710.1016/j.ecoleng.2013.10.017 Search in Google Scholar

Bakhshoodeh, R., Alavi, N., Oldham, C., Santos, R. M., Babaei A. A., Vymazal, J. & Paydary, P. (2020). Constructed wetlands for landfill leachate treatment: a review. Ecological Engineering, 146. https://doi.org/10.1016/j.ecoleng.2020.10572510.1016/j.ecoleng.2020.105725 Search in Google Scholar

Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. OJ L 375, 31.12.1991. Search in Google Scholar

Ding, Y., Song, X., Wang, Y. & Yan, D. (2012). Effects of dissolved oxygen and influent COD/N ratios on nitrogen removal in horizontal subsurface flow constructed wetland. Ecological Engineering, 46, 107–111. https://doi.org/10.1016/j.ecoleng.2012.06.00210.1016/j.ecoleng.2012.06.002 Search in Google Scholar

Dong, H., Qiang, Z., Li, T., Jin, H. & Chen, W. (2012). Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water. Journal of Environmental Sciences, 24 (4), 596–601. https://doi.org/10.1016/S1001-0742(11)60804-810.1016/S1001-0742(11)60804-8 Search in Google Scholar

García, J., Aguirre, P., Barragán, J., Mujeriego, R., Matamoros, V. & Bayona, J. M. (2005). Effect of key design parameters on the efficiency of horizontal subsurface flow constructed wetlands. Ecological Engineering, 25 (4), 405–418. https://doi.org/10.1016/j.ecoleng.2005.06.01010.1016/j.ecoleng.2005.06.010 Search in Google Scholar

Grinberga, L. & Lagzdiņš, A. (2017). Nutrient removal by subsurface flow constructed wetland in the farm Mezaciruli. Rural And Environmental Engineering, Landscape Architecture, 1, 160–165. https://doi.org/10.22616/rrd.23.2017.02410.22616/rrd.23.2017.024 Search in Google Scholar

Grinberga, L., Lauva, D. & Lagzdiņš, A. (2021). Treatment of storm water from agricultural catchment in pilot scale constructed wetland. Environmental and Climate Technologies, 25 (1), 640–649. https://doi.org/10.2478/rtuect-2021-004810.2478/rtuect-2021-0048 Search in Google Scholar

Jansons, V. & Grinberga, L. (2012). Mākslīgie mitrāji ūdens piesārņojuma samazināšanai. Mārupe: SIA Drukātava. Search in Google Scholar

Katayon, S., Fiona, Z., Noor, M. J. M. M., Halim, G.A. & Ahmad, J. (2008). Treatment of mild domestic wastewater using subsurface constructed wetlands in Malaysia. International Journal of Environmental Studies, 65 (1), 87–102. https://doi.org/10.1080/0020723060112519210.1080/00207230601125192 Search in Google Scholar

Li, F., Lu, X. Zheng, X. & Zhang, X. (2014). Three-stage horizontal subsurface flow constructed wetlands for organics and nitrogen removal: effect of aeration. Ecological Engineering, 68, 90–96. https://doi.org/10.1016/j.ecoleng.2014.03.02510.1016/j.ecoleng.2014.03.025 Search in Google Scholar

Liang, M-Y., Han, Y-C., Easa, S. M., Chu, P-P., Wang, Y-L. & Zhou, X-Y. (2020). New solution to build constructed wetland in cold climatic region. Science of The Total Environment, 719, 137124. https://doi.org/10.1016/j.scitotenv.2020.13712410.1016/j.scitotenv.2020.137124 Search in Google Scholar

Maltais-Landry, G., Chazarenc, F., Comeau, Y., Troesch, S. & Brisson, J. (2007). Effects of artificial aeration, macrophyte species, and loading rate on removal efficiency in constructed wetland mesocosms treating fish farm wastewater. Journal of Environmental Engineering and Science, 6 (4), 409–414. https://doi.org/10.1139/S06-06910.1139/s06-069 Search in Google Scholar

Noorvee, A., Põldvere, E. & Mander, Ü. (2007). The effect of pre-aeration on the purification processes in the long-term performance of a horizontal subsurface flow constructed wetland. Science of the Total Environment, 380, 229–236. https://doi.org/10.1016/J.SCITOTENV.2006.10.00810.1016/j.scitotenv.2006.10.008 Search in Google Scholar

Seo, D. C., Hwang, S. H., Kim, H. J., Cho, J. S., Lee, H. J., DeLaune, R. D., Jugsujinda, A., Lee, S. T., Seo, J.Y. & Heo, J. S. (2008). Evaluation of 2- and 3-stage combinations of vertical and horizontal flow constructed wetlands for treating greenhouse wastewater. Ecological Engineering, 32 (2), 121–132. https://doi.org/10.1016/j.ecoleng.2007.10.00710.1016/j.ecoleng.2007.10.007 Search in Google Scholar

Song, H. L., Li, X. N., Lu, X. W. & Inamori, Y. (2009). Investigation of microcystin removal from eutrophic surface water by aquatic vegetable bed. Ecological Engineering, 35, 1589–1598. https://doi.org/10.1016/j.ecoleng.2008.04.00510.1016/j.ecoleng.2008.04.005 Search in Google Scholar

Tchobanoglous, G. F., Burton, L. & Stensel, H. D. (2004). Wastewater Engineering: Treatment and Reuse. 4th ed. Boston: Metcalf & Eddy, McGraw-Hill Education. Search in Google Scholar

Trang, N. T. D., Konnerup, D., Schierup, H. H., Chiem, N. H., Tuan, L. A. & Brix, H. (2010). Kinetics of pollutant removal from domestic wastewater in a tropical horizontal subsurface flow constructed wetland system: effects of hydraulic loading rate. Ecological Engineering, 36 (4), 527–535. https://doi.org/10.1016/j.ecoleng.2009.11.02210.1016/j.ecoleng.2009.11.022 Search in Google Scholar

Tsihrintzis, V. A., Akratos, C. S., Gikas, G. D., Karamouzis, D. & Angelakis, A. N. (2007). Performance and cost comparison of a FWS and a VSF constructed wetland system. Environmental Technology, 28 (6), 621–628. https://doi.org/10.1080/0959333280861882010.1080/09593332808618820 Search in Google Scholar

Tunçsiper, B. (2009). Nitrogen removal in a combined vertical and horizontal subsurface-flow constructed wetland system. Desalination, 247 (1–3), 466–475. https://doi.org/10.1016/j.desal.2009.03.00310.1016/j.desal.2009.03.003 Search in Google Scholar

Varma, M., Gupta, A. K., Ghosal & P. S., Majumder, A. (2021). A review on performance of constructed wetlands in tropical and cold climate: Insights of mechanism, role of influencing factors, and system modification in low temperature. Science of The Total Environment, 755, Part 2, 142540. https://www.sciencedirect.com/science/article/pii/S004896972036069110.1016/j.scitotenv.2020.142540 Search in Google Scholar

Vymazal, J. (2005). Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological Engineering, 25 (5), 478–490. https://doi.org/10.1016/j.ecoleng.2005.07.01010.1016/j.ecoleng.2005.07.010 Search in Google Scholar

Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of The Total Environment, 380 (1–3), 48–65. https://doi.org/10.1016/j.scitotenv.2006.09.01410.1016/j.scitotenv.2006.09.014 Search in Google Scholar

eISSN:
2544-1760
Langue:
Anglais