Accès libre

The Emergence of Different Functionally Equivalent PAH Degrading Microbial Communities from a Single Soil in Liquid PAH Enrichment Cultures and Soil Microcosms Receiving PAHs with and without Bioaugmentation

À propos de cet article

Citez

Abbasian F, Lockington R, Megharaj M, Naidu R. 2016a. The biodiversity changes in the microbial population of soils contaminated with crude oil. Curr Microbiol. 72:663–670.AbbasianFLockingtonRMegharajMNaiduR.2016aThe biodiversity changes in the microbial population of soils contaminated with crude oilCurr Microbiol.7266367010.1007/s00284-016-1001-426858133Search in Google Scholar

Abbasian F, Palanisami T, Megharaj M, Naidu R, Lockington R, Ramadass R. 2016b. Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis. Biotechnol. Prog. 32:638–648.AbbasianFPalanisamiTMegharajMNaiduRLockingtonRRamadassR.2016bMicrobial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysisBiotechnol. Prog.3263864810.1002/btpr.224926914145Search in Google Scholar

Aleer S, Adetutu EM, Weber J, Ball AS, Juhasz AL. 2014. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils J Environ Manag. 136:27–36.AleerSAdetutuEMWeberJBallASJuhaszAL.2014Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soilsJ Environ Manag.136273610.1016/j.jenvman.2014.01.03124553295Search in Google Scholar

Bento FM, Camargo FA, Okeke BC, Frankenberger WT. 2005. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol. 96:1049–1055.BentoFMCamargoFAOkekeBCFrankenbergerWT.2005Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentationBioresour Technol.961049105510.1016/j.biortech.2004.09.00815668201Search in Google Scholar

Brown SD, Utturkar SM, Klingeman DM, Johnson CM, Martin SL, Land ML, Lu TY, Schadt CW, Doktycz MJ, Pelletier DA. 2012. Twenty-one genome sequences from Pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoides. J Bacteriol. 194:5991–5993.BrownSDUtturkarSMKlingemanDMJohnsonCMMartinSLLandMLLuTYSchadtCWDoktyczMJPelletierDA.2012Twenty-one genome sequences from Pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoidesJ Bacteriol.1945991599310.1128/JB.01243-12348608923045501Search in Google Scholar

Cao BY, Ma T, Ren Y, Li GQ, Li P, Guo X, Ding P, Feng L. 2011. Complete genome sequence of Pusillimonas sp. T7-7, a cold-tolerant diesel oil-degrading bacterium isolated from the Bohai Sea in China. J Bacteriol. 193:4021–4022.CaoBYMaTRenYLiGQLiPGuoXDingPFengL.2011Complete genome sequence of Pusillimonas sp. T7-7, a cold-tolerant diesel oil-degrading bacterium isolated from the Bohai Sea in ChinaJ Bacteriol.1934021402210.1128/JB.05242-11314751621622753Search in Google Scholar

Chaudhary DK, Kim J. 2018. Flavobacterium naphthae sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol. 68:305–309.ChaudharyDKKimJ.2018Flavobacterium naphthae sp. nov., isolated from oil-contaminated soilInt J Syst Evol Microbiol.6830530910.1099/ijsem.0.00250429185939Search in Google Scholar

Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM. 2005. The Ribosomal Database Project (RDP-II), sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33:D294–D296.ColeJRChaiBFarrisRJWangQKulamSAMcGarrellDMGarrityGMTiedjeJM.2005The Ribosomal Database Project (RDP-II), sequences and tools for high-throughput rRNA analysisNucleic Acids Res.33D294D296Search in Google Scholar

Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM. 2009. The Ribosomal Database Project, improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37:D141–145.ColeJRWangQCardenasEFishJChaiBFarrisRJKulam-Syed-MohideenASMcGarrellDMMarshTGarrityGMTiedjeJM.2009The Ribosomal Database Project, improved alignments and new tools for rRNA analysisNucleic Acids Res.37D14114510.1093/nar/gkn879268644719004872Search in Google Scholar

Curry JC, Jurelevicius DA, Villena HDM, Jesus HE, Peixoto RS, Schaefer CEGR, Bícego MC, Seldin L, Rosado AS. 2015. Microbial diversity and hydrocarbon depletion in low and high diesel-polluted soil samples from Keller Peninsula, South Shetland Islands. Antarct Sci. 27:263–273.CurryJCJureleviciusDAVillenaHDMJesusHEPeixotoRSSchaeferCEGRBícegoMCSeldinLRosadoAS.2015Microbial diversity and hydrocarbon depletion in low and high diesel-polluted soil samples from Keller Peninsula, South Shetland IslandsAntarct Sci.2726327310.1017/S0954102014000728Search in Google Scholar

Eisler R. 1987. Polycyclic aromatic hydrocarbon hazards to fish, wildlife and invertebrates, a synoptic review. Contaminant Hazard Reviews. Report 11: Biological Report 85(1.11). Laurel, MD (USA): U.S. Department of the Interior, Fish and Wildlife Service.EislerR.1987Polycyclic aromatic hydrocarbon hazards to fish, wildlife and invertebrates, a synoptic reviewContaminant Hazard Reviews. Report 11: Biological Report 85(1.11)Laurel, MD (USA)U.S. Department of the Interior, Fish and Wildlife Service10.5962/bhl.title.11339Search in Google Scholar

Eriksson M, Sodersten E, Yu Z, Dalhammar G, Mohn WW. 2003. Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Appl Environ Microbiol. 69:275–284.ErikssonMSoderstenEYuZDalhammarGMohnWW.2003Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soilsAppl Environ Microbiol.6927528410.1128/AEM.69.1.275-284.2003Search in Google Scholar

Ferrari B, Winsley T, Ji M, Neilan B. 2014. Insights into the distribution and abundance of the ubiquitous candidatus Saccharibacteria phylum following tag pyrosequencing. Sci Rep. 4:3957.FerrariBWinsleyTJiMNeilanB.2014Insights into the distribution and abundance of the ubiquitous candidatus Saccharibacteria phylum following tag pyrosequencingSci Rep.4395710.1038/srep03957Search in Google Scholar

Guazzaroni ME, Herbst FA, Lores I, Tamames J, Peláez AI, López-Cortés N, Alcaide M, Del Pozo MV, Vieites JM, von Bergen M, et al. 2013. Metaproteogenomic insights beyond bacterial response to naphthalene exposure and bio-stimulation. ISME J. 7:122–136.GuazzaroniMEHerbstFALoresITamamesJPeláezAILópez-CortésNAlcaideMDel PozoMVVieitesJMvon BergenM2013Metaproteogenomic insights beyond bacterial response to naphthalene exposure and bio-stimulationISME J.712213610.1038/ismej.2012.82Search in Google Scholar

Gutierrez T, Rhodes G, Mishamandani S, Berry D, Whitman WB, Nichols PD, Semple KT, Aitken MD. 2014. Polycyclic aromatic hydrocarbon degradation of phytoplankton-associated Arenibacter spp. and description of Arenibacter algicola sp. nov., an aromatic hydrocarbon-degrading bacterium. Appl Environ Microbiol. 80(2): 618–628.GutierrezTRhodesGMishamandaniSBerryDWhitmanWBNicholsPDSempleKTAitkenMD.2014Polycyclic aromatic hydrocarbon degradation of phytoplankton-associated Arenibacter spp. and description of Arenibacter algicola sp. nov., an aromatic hydrocarbon-degrading bacteriumAppl Environ Microbiol.80(2):61862810.1128/AEM.03104-13Search in Google Scholar

Haritash AK, Kaushik CP. 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J Hazard Mater. 169:1–15.HaritashAKKaushikCP.2009Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A reviewJ Hazard Mater.16911510.1016/j.jhazmat.2009.03.137Search in Google Scholar

Hilyard EJ, Jones-Meehan JM, Spargo BJ, Hill RT. 2008. Enrichment, isolation and phylogenetic identification of polycyclic aromatic hydrocarbon-degrading bacteria from Elizabeth River sediments. Appl Environ Microbiol. 74:1176–1182.HilyardEJJones-MeehanJMSpargoBJHillRT.2008Enrichment, isolation and phylogenetic identification of polycyclic aromatic hydrocarbon-degrading bacteria from Elizabeth River sedimentsAppl Environ Microbiol.741176118210.1128/AEM.01518-07Search in Google Scholar

Ho Y, Jackson MM, Yang Y, Mueller JG, Pritchard PH. 2000. Characterization of fluoranthene- and pyrene-degrading bacteria isolated from PAH-contaminated soils and sediments and comparison of several Sphingomonas spp. J Ind Microbiol Biotech. 24:100–112.HoYJacksonMMYangYMuellerJGPritchardPH.2000Characterization of fluoranthene- and pyrene-degrading bacteria isolated from PAH-contaminated soils and sediments and comparison of several Sphingomonas sppJ Ind Microbiol Biotech.2410011210.1038/sj.jim.2900774Search in Google Scholar

Janssen PH. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol. 72:1719–1728.JanssenPH.2006Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genesAppl Environ Microbiol.721719172810.1128/AEM.72.3.1719-1728.2006Search in Google Scholar

Juhasz AL, Naidu R. 2000. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons, a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegradation. 45:57–88.JuhaszALNaiduR.2000Bioremediation of high molecular weight polycyclic aromatic hydrocarbons, a review of the microbial degradation of benzo[a]pyreneInt Biodeterior Biodegradation.45578810.1016/S0964-8305(00)00052-4Search in Google Scholar

Kadali KK, Simons KL, Skuza PP, Moore RB, Ball AS. 2012. A complementary approach to identifying and assessing the remediation potential of hydrocarbonoclastic bacteria. J Microbiol Methods. 88:348–355.KadaliKKSimonsKLSkuzaPPMooreRBBallAS.2012A complementary approach to identifying and assessing the remediation potential of hydrocarbonoclastic bacteriaJ Microbiol Methods.8834835510.1016/j.mimet.2011.12.00622245375Search in Google Scholar

Kertesz MA, Kawasaki A. 2010. Hydrocarbon-degrading Sphingomonads, Sphingomonas, Sphingobium, Novosphingobium, and Sphingopyxis. In: Timmis KN, McGenity T, Meer JR, Lorenzo V, editors. Handbook of hydrocarbon and lipid microbiology. Berlin Heidelberg (Germany): Springer. p. 1693–1705.KerteszMAKawasakiA.2010Hydrocarbon-degrading Sphingomonads, Sphingomonas, Sphingobium, Novosphingobium, and Sphingopyxis. In:TimmisKNMcGenityTMeerJRLorenzoV, editors.Handbook of hydrocarbon and lipid microbiologyBerlin Heidelberg (Germany)Springer. p.1693170510.1007/978-3-540-77587-4_119Search in Google Scholar

Khan MAI, Biswas B, Smith E, Mahmud SA, Hasan NA, Khan MAW, Naidu R, Megharaj M. 2018. Microbial diversity changes with rhizosphere and hydrocarbons in contrasting soils. Ecotoxicol Environ Saf. 156:434–442.KhanMAIBiswasBSmithEMahmudSAHasanNAKhanMAWNaiduRMegharajM.2018Microbial diversity changes with rhizosphere and hydrocarbons in contrasting soilsEcotoxicol Environ Saf.15643444210.1016/j.ecoenv.2018.03.00629604472Search in Google Scholar

Kostka JE, Prakash O, Overholt WA, Green SJ. Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M. 2011. Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol. 77:7962–7974.KostkaJEPrakashOOverholtWAGreenSJFreyerGCanionADelgardioJNortonNHazenTCHuettelM.2011Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spillAppl Environ Microbiol.777962797410.1128/AEM.05402-11320897721948834Search in Google Scholar

Kuske CR, Barns SM, Busch JD. 1997. Diverse uncultivated bacterial groups from soils of the arid southwestern United States those are present in many geographic regions. Appl Environ Microbiol. 63:3614–3621.KuskeCRBarnsSMBuschJD.1997Diverse uncultivated bacterial groups from soils of the arid southwestern United States those are present in many geographic regionsAppl Environ Microbiol.633614362110.1128/aem.63.9.3614-3621.19971686689293013Search in Google Scholar

Lane DJ. 1991. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. New York (USA): John Wiley and Sons. p. 115–175.LaneDJ.199116S/23S rRNA sequencing. In:StackebrandtEGoodfellowM, editors.Nucleic acid techniques in bacterial systematicsNew York (USA)John Wiley and Sons. p.115175Search in Google Scholar

Lauber CL, Strickland MS, Bradford MA, Fierer N. 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem. 40:2407–2415.LauberCLStricklandMSBradfordMAFiererN.2008The influence of soil properties on the structure of bacterial and fungal communities across land-use typesSoil Biol Biochem.402407241510.1016/j.soilbio.2008.05.021Search in Google Scholar

Liang Y, Zhao H, Zhang X, Zhou J, Li G. 2014. Contrasting microbial functional genes in two distinct saline-alkali and slightly acidic oil-contaminated sites. Sci Total Environ. 487:272–278.LiangYZhaoHZhangXZhouJLiG.2014Contrasting microbial functional genes in two distinct saline-alkali and slightly acidic oil-contaminated sitesSci Total Environ.48727227810.1016/j.scitotenv.2014.04.03224784752Search in Google Scholar

Lindstrom JE, Prince RC, Clark JC, Grossman MJ, Yeager TR, Braddock JF, Brown, EJ. 1991. Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spill. Appl Environ Microbiol. 57:2514–2522.LindstromJEPrinceRCClarkJCGrossmanMJYeagerTRBraddockJFBrown,EJ.1991Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spillAppl Environ Microbiol.572514252210.1128/aem.57.9.2514-2522.19911836121662935Search in Google Scholar

Margesin R, Hämmerle M, Tscherko D. 2007. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time. Microbiol Ecol. 53:259–269.MargesinRHämmerleMTscherkoD.2007Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation timeMicrobiol Ecol.5325926910.1007/s00248-006-9136-717265002Search in Google Scholar

Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R. 2011. Bioremediation approaches for organic pollutants: a critical perspective. Environ Int. 37:1362–1375.MegharajMRamakrishnanBVenkateswarluKSethunathanNNaiduR.2011Bioremediation approaches for organic pollutants: a critical perspectiveEnviron Int.371362137510.1016/j.envint.2011.06.00321722961Search in Google Scholar

Militon C, Boucher D, Vachelard C, Perchet G, Barra V, Troquet J, Peyretaillade E, Peyret P. 2010. Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil. FEMS Microbiol Ecol. 74:669–681.MilitonCBoucherDVachelardCPerchetGBarraVTroquetJPeyretailladeEPeyretP.2010Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soilFEMS Microbiol Ecol.7466968110.1111/j.1574-6941.2010.00982.x21044099Search in Google Scholar

Mrozik A, Piotrowska-Seget Z. 2010. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res. 165:363–375.MrozikAPiotrowska-SegetZ.2010Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compoundsMicrobiol Res.16536337510.1016/j.micres.2009.08.001Search in Google Scholar

Naether A, Foesel BU, Naegele V, Wüst PK, Weinert J, Bonkowski M, Alt F, Oelmann Y, Polle A, Lohaus G, et al. 2012. Environmental factors affect Acidobacterial communities below the subgroup level in grassland and forest soils. Appl Environ Microbiol. 78:7398–7406.NaetherAFoeselBUNaegeleVWüstPKWeinertJBonkowskiMAltFOelmannYPolleALohausG2012Environmental factors affect Acidobacterial communities below the subgroup level in grassland and forest soilsAppl Environ Microbiol.787398740610.1128/AEM.01325-12Search in Google Scholar

Patel V, Cheturvedula S, Madamwar D. 2012. Phenanthrene degradation by Pseudoxanthomonas sp. DMVP2 isolated from hydrocarbon contaminated sediment of Amlakhadi canal, Gujarat, India. J Hazard Mater. 201–202:43–51.PatelVCheturvedulaSMadamwarD.2012Phenanthrene degradation by Pseudoxanthomonas sp. DMVP2 isolated from hydrocarbon contaminated sediment of Amlakhadi canal, Gujarat, IndiaJ Hazard Mater.201–2024351Search in Google Scholar

Petry T, Schmid P, Schlatter C. 1996. The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons (PAHs). Chemosphere. 32:639–648.PetryTSchmidPSchlatterC.1996The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons (PAHs)Chemosphere.3263964810.1016/0045-6535(95)00348-7Search in Google Scholar

Philp JC, Atlas RM. 2005. Bioremediation of contaminated soil and aquifers. In: Atlas R M, Jim CP, editors. Bioremediation: Applied Microbial Solution for Real – World Environmental Clean Up. Washington DC (USA): ASM Press. p. 139.PhilpJCAtlasRM.2005Bioremediation of contaminated soil and aquifers. In:AtlasR MJimCP, editors.Bioremediation: Applied Microbial Solution for Real – World Environmental Clean UpWashington DC (USA)ASM Press. p.139Search in Google Scholar

Phillips LA, Germida JJ, Farrell RE, Greer CW. 2008. Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants. Soil Biol Biochem. 40:3054–3064.PhillipsLAGermidaJJFarrellREGreerCW.2008Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plantsSoil Biol Biochem.403054306410.1016/j.soilbio.2008.09.006Search in Google Scholar

Prince R, Gramain A, McGenity T. 2010. Prokaryotic hydrocarbon degraders. In: Timmis KN, McGenity TJ, van der Meer JR, de Lorenzo V, editors. Handbook of hydrocarbon and lipid microbiology. Berlin (Germany): Springer. p. 1669–1692.PrinceRGramainAMcGenityT.2010Prokaryotic hydrocarbon degraders. In:TimmisKNMcGenityTJvan der MeerJRde LorenzoV, editors.Handbook of hydrocarbon and lipid microbiologyBerlin (Germany)Springer. p.1669169210.1007/978-3-540-77587-4_118Search in Google Scholar

Rambeloarisoa E, Rontani JF, Giusti G, Duvvnjak Z, Bertrand JC. 1984. Degradation of crude oil by a mixed population of bacteria isolated from sea surface foams. Mar Biol. 83:69–81.RambeloarisoaERontaniJFGiustiGDuvvnjakZBertrandJC.1984Degradation of crude oil by a mixed population of bacteria isolated from sea surface foamsMar Biol.83698110.1007/BF00393087Search in Google Scholar

Samanta SK, Singh OV, Jain RK. 2002. Polycyclic aromatic hydrocarbons, environmental pollution and bioremediation. Trends Biotechnol. 20:243–248.SamantaSKSinghOVJainRK.2002Polycyclic aromatic hydrocarbons, environmental pollution and bioremediationTrends Biotechnol.2024324810.1016/S0167-7799(02)01943-1Search in Google Scholar

Sayara T, Borras E, Caminal G, Sarra M, Sanchez A. 2011. Bioremediation of PAHs-contaminated soil through composting: Influence of bioaugmentation and biostimulation on contaminant biodegradation. Int Biodeterior Biodegrad. 65:859–865.SayaraTBorrasECaminalGSarraMSanchezA.2011Bioremediation of PAHs-contaminated soil through composting: Influence of bioaugmentation and biostimulation on contaminant biodegradationInt Biodeterior Biodegrad.6585986510.1016/j.ibiod.2011.05.006Search in Google Scholar

Seo JS, Keum YS, Harada RM, Li,p QX. 2007. Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo, Hawaii. J Sci Food Agric. 55:5383–5389.SeoJSKeumYSHaradaRMLi,pQX.2007Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo, HawaiiJ Sci Food Agric.555383538910.1021/jf063763017552538Search in Google Scholar

Seo JS, Keum YS, Li QX. 2009. Bacterial degradation of aromatic compounds. Int J Environ Res Public Health. 6:278–309.SeoJSKeumYSLiQX.2009Bacterial degradation of aromatic compoundsInt J Environ Res Public Health.627830910.3390/ijerph6010278267233319440284Search in Google Scholar

Shokrollahzadeh S, Golmohammad F, Shokouhi H. 2012. Study of Sphingopyxis isolates in degradation of polycyclic aromatic hydrocarbons. Chem Eng Trans. 27:55–60.ShokrollahzadehSGolmohammadFShokouhiH.2012Study of Sphingopyxis isolates in degradation of polycyclic aromatic hydrocarbonsChem Eng Trans.275560Search in Google Scholar

Silva IS, Costa SE, Ragagnin MC, Fonseca FA, Franciscon GDE, Grossman MJ, Durrant LR. 2009. Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with microbial isolates and consortia. Bioresour Technol. 100:4669–4675.SilvaISCostaSERagagninMCFonsecaFAFrancisconGDEGrossmanMJDurrantLR.2009Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with microbial isolates and consortiaBioresour Technol.1004669467510.1016/j.biortech.2009.03.07919477638Search in Google Scholar

Singleton DR, Richardson SD, Aitken MD. 2011. Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil. Biodegradation 22: 1061–1073.SingletonDRRichardsonSDAitkenMD.2011Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soilBiodegradation221061107310.1007/s10532-011-9463-3322751221369833Search in Google Scholar

Sutton NB, Maphosa F, Morillo JA, Al-Soud WA, Langenhoff AAM, Grotenhuis T, Smidt H. 2013. Impact of long-term diesel contamination on soil microbial community structure. Appl Environ Microbiol. 79:619–630.SuttonNBMaphosaFMorilloJAAl-SoudWALangenhoffAAMGrotenhuisTSmidtH.2013Impact of long-term diesel contamination on soil microbial community structureAppl Environ Microbiol.7961963010.1128/AEM.02747-12355374923144139Search in Google Scholar

Szczepaniak Z, Cyplik P, Juzwa W, Czarny J, Staninska J, Piotrowska-Cyplik A. 2015. Antibacterial effect of the Trichoderma viride fungi on soil microbiome during PAH’s biodegradation. Int Biodeter Biodegr. 104:170–177.SzczepaniakZCyplikPJuzwaWCzarnyJStaninskaJPiotrowska-CyplikA.2015Antibacterial effect of the Trichoderma viride fungi on soil microbiome during PAH’s biodegradationInt Biodeter Biodegr.10417017710.1016/j.ibiod.2015.06.002Search in Google Scholar

Szulc A, Ambrożewicz D, Sydow M, Ławniczak Ł, Piotrowska-Cyplik A, Marecik R, Chrzanowski Ł. 2014. The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: Feasibility during field studies. J Environ Manage. 132:121–128.SzulcAAmbrożewiczDSydowMŁawniczakŁPiotrowska-CyplikAMarecikRChrzanowskiŁ.2014The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: Feasibility during field studiesJ Environ Manage.13212112810.1016/j.jenvman.2013.11.00624291585Search in Google Scholar

Thompson IP, Van Der Gast CJ, Ciric L, Singer AC. 2005. Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol. 7(7):909–915.ThompsonIPVan Der GastCJCiricLSingerAC.2005Bioaugmentation for bioremediation: the challenge of strain selectionEnviron Microbiol.7(7):90991510.1111/j.1462-2920.2005.00804.x15946288Search in Google Scholar

Tyagi M, da Fonseca MM, de Carvalho CC. 2011. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation. 22:231–241.TyagiMda FonsecaMMde CarvalhoCC.2011Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processesBiodegradation.2223124110.1007/s10532-010-9394-420680666Search in Google Scholar

Van Hamme JD, Singh A, Ward OP. 2003. Recent advances in petroleum microbiology. Microbiol Mol Biol Rev. 67:503–549.Van HammeJDSinghAWardOP.2003Recent advances in petroleum microbiologyMicrobiol Mol Biol Rev.6750354910.1128/MMBR.67.4.503-549.200330904814665675Search in Google Scholar

Vinas M, Sabate J, Espuny MJ, Solanas AM. 2005. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosotecontaminated soil. Appl Environ Microbiol. 71:7008–7018.VinasMSabateJEspunyMJSolanasAM.2005Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosotecontaminated soilAppl Environ Microbiol.717008701810.1128/AEM.71.11.7008-7018.2005128775116269736Search in Google Scholar

Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl Environ Microbiol. 73:5261–5267.WangQGarrityGMTiedjeJMColeJR.2007Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial TaxonomyAppl Environ Microbiol.735261526710.1128/AEM.00062-07195098217586664Search in Google Scholar

Widada J, Nojiri H, Kasuga K, Yoshida T, Habe H, Omori T. 2002. Molecular detection and diversity of polycyclic aromatic hydrocarbon-degrading bacteria isolated from geographically diverse sites. Appl Microbiol Biotechnol. 58:202–209.WidadaJNojiriHKasugaKYoshidaTHabeHOmoriT.2002Molecular detection and diversity of polycyclic aromatic hydrocarbon-degrading bacteria isolated from geographically diverse sitesAppl Microbiol Biotechnol.5820220910.1007/s00253-001-0880-9Search in Google Scholar

Wilson SC, Jones KC. 1993. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut. 81:229–249.WilsonSCJonesKC.1993Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a reviewEnviron Pollut.8122924910.1016/0269-7491(93)90206-4Search in Google Scholar

Wolin EA, Wolin MJ, Wolfe RS. 1963. Formation of methane by bacterial extracts. J Biol Chem. 238:2882–2886.WolinEAWolinMJWolfeRS.1963Formation of methane by bacterial extractsJ Biol Chem.2382882288610.1016/S0021-9258(18)67912-8Search in Google Scholar

Wyrwas B, Dymaczewski Z, Zgoła-Grześkowiak A, Szymański A, Frańska M, Kruszelnicka I, Ginter-Kramarczyk D, Cyplik P, Ławniczak Ł, Chrzanowski Ł. 2013. Biodegradation of Triton X-100 and its primary metabolites by a bacterial community isolated from activated sludge. J Environ Manage. 128:292–299.WyrwasBDymaczewskiZZgoła-GrześkowiakASzymańskiAFrańskaMKruszelnickaIGinter-KramarczykDCyplikPŁawniczakŁChrzanowskiŁ.2013Biodegradation of Triton X-100 and its primary metabolites by a bacterial community isolated from activated sludgeJ Environ Manage.12829229910.1016/j.jenvman.2013.05.02823770380Search in Google Scholar

Yoon JH, Kang SJ, Lee SY, Lee JS, Park S. 2011. Ohtaekwangia koreensis gen. nov., sp. nov. and Ohtaekwangia kribbensis sp. nov., isolated from marine sand, deep-branching members of the phylum Bacteroidetes. Int J Syst Evol Microbiol. 61:1066–1072.YoonJHKangSJLeeSYLeeJSParkS.2011Ohtaekwangia koreensis gen. nov., sp. nov. and Ohtaekwangia kribbensis sp. nov., isolated from marine sand, deep-branching members of the phylum BacteroidetesInt J Syst Evol Microbiol.611066107210.1099/ijs.0.025874-020511453Search in Google Scholar

Xie S, Sun W, Luo C, Cupples AM. 2011. Novel aerobic benzene degrading microorganisms identified in three soils by stable isotope probing. Biodegradation. 22:71–81.XieSSunWLuoCCupplesAM.2011Novel aerobic benzene degrading microorganisms identified in three soils by stable isotope probingBiodegradation.22718110.1007/s10532-010-9377-520549308Search in Google Scholar

eISSN:
2544-4646
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Microbiology and Virology