À propos de cet article

Citez

Shen C, Wang Z, Fang Z, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020;323:1582–9. Shen C Wang Z Fang Z Treatment of 5 critically ill patients with COVID-19 with convalescent plasma . JAMA 2020 ; 323 : 1582 9 . 10.1001/jama.2020.4783710150732219428 Search in Google Scholar

Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020; 20:398–400. Chen L Xiong J Bao L Shi Y . Convalescent plasma as a potential therapy for COVID-19 . Lancet Infect Dis 2020 ; 20 : 398 400 . 10.1016/S1473-3099(20)30141-9712821832113510 Search in Google Scholar

Rodriguez Z, Shane AL, Verkerke H, et al. COVID-19 convalescent plasma clears SARS-CoV-2 refractory to remdesivir in an infant with congenital heart disease. Blood Adv 2020;4:4278–81. Rodriguez Z Shane AL Verkerke H COVID-19 convalescent plasma clears SARS-CoV-2 refractory to remdesivir in an infant with congenital heart disease . Blood Adv 2020 ; 4 : 4278 81 . 10.1182/bloodadvances.2020002507750985832915971 Search in Google Scholar

Joyner MJ, Wright RS, Fairweather D, et al. Early safety indicators of COVID-19 convalescent plasma in 5000 patients. J Clin Invest 2020;130:4791–7. Joyner MJ Wright RS Fairweather D Early safety indicators of COVID-19 convalescent plasma in 5000 patients . J Clin Invest 2020 ; 130 : 4791 7 . 10.1172/JCI140200745623832525844 Search in Google Scholar

Zhang B, Liu S, Tan T, et al. Treatment with convalescent plasma for critically ill patients with severe acute respiratory syndrome coronavirus 2 infection. Chest 2020;158:e9–e13. Zhang B Liu S Tan T Treatment with convalescent plasma for critically ill patients with severe acute respiratory syndrome coronavirus 2 infection . Chest 2020 ; 158 : e9 e13 . 10.1016/j.chest.2020.03.039719533532243945 Search in Google Scholar

Joyner MJ, Carter RE, Senefeld JW, et al. Convalescent plasma antibody levels and the risk of death from COVID-19. N Engl J Med. 13 January 2021 [Epub ahead of print]. DOI: 10.1056/NEJMoa2031893. Available from https://pubmed.ncbi.nlm.nih.gov/33523609/. Accessed January 2021. Joyner MJ Carter RE Senefeld JW Convalescent plasma antibody levels and the risk of death from COVID-19 . N Engl J Med. 13 January 2021 [Epub ahead of print]. DOI: 10.1056/NEJMoa2031893. Available from https://pubmed.ncbi.nlm.nih.gov/33523609/ . Accessed January 2021 . Search in Google Scholar

Libster R, Marc GP, Wappner D, et al. Early high-titer plasma therapy to prevent severe COVID-19 in older adults. N Engl J Med 2021;384:610–8. Libster R Marc GP Wappner D Early high-titer plasma therapy to prevent severe COVID-19 in older adults . N Engl J Med 2021 ; 384 : 610 8 . 10.1056/NEJMoa2033700779360833406353 Search in Google Scholar

Stowell SR, Guarner J. Role of serology in the coronavirus disease 2019 pandemic. Clin Infect Dis 2020;71:1935–6. Stowell SR Guarner J . Role of serology in the coronavirus disease 2019 pandemic . Clin Infect Dis 2020 ; 71 : 1935 6 . 10.1093/cid/ciaa510719761832357206 Search in Google Scholar

den Hartog G, Schepp RM, Kuijer M, et al. SARS-CoV-2-specific antibody detection for seroepidemiology: a multiplex analysis approach accounting for accurate seroprevalence. J Infect Dis 2020;222:1452–61. den Hartog G Schepp RM Kuijer M SARS-CoV-2-specific antibody detection for seroepidemiology: a multiplex analysis approach accounting for accurate seroprevalence . J Infect Dis 2020 ; 222 : 1452 61 . 10.1093/infdis/jiaa479745474032766833 Search in Google Scholar

Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020;581:215–20. Lan J Ge J Yu J Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor . Nature 2020 ; 581 : 215 20 . 10.1038/s41586-020-2180-532225176 Search in Google Scholar

Yuan M, Wu NC, Zhu X, et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 2020;368:630–3. Yuan M Wu NC Zhu X A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV . Science 2020 ; 368 : 630 3 . 10.1126/science.abb7269716439132245784 Search in Google Scholar

Verkerke H, Horwath M, Saeedi B, et al. Comparison of antibody class specific SARS-CoV-2 serology for the diagnosis of acute COVID-19. J Clin Microbiol. 10 January 2021 [Epub ahead of print]. DOI: 10.1128/JCM.02026-20. Available from https://pubmed.ncbi.nlm.nih.gov/33468605/. Accessed January 2021. Verkerke H Horwath M Saeedi B Comparison of antibody class specific SARS-CoV-2 serology for the diagnosis of acute COVID-19 . J Clin Microbiol. 10 January 2021 [Epub ahead of print]. DOI: 10.1128/JCM.02026-20. Available from https://pubmed.ncbi.nlm.nih.gov/33468605/ . Accessed January 2021 . 10.1128/JCM.02026-20809274133468605 Search in Google Scholar

Allen JWL, Verkerke H, Owens J, et al. Serum pooling for rapid expansion of anti-SARS-CoV-2 antibody testing capacity. Transfus Clin Biol 2021;28:51–4. Allen JWL Verkerke H Owens J Serum pooling for rapid expansion of anti-SARS-CoV-2 antibody testing capacity . Transfus Clin Biol 2021 ; 28 : 51 4 . 10.1016/j.tracli.2020.10.008757542533096207 Search in Google Scholar

Suthar MS, Zimmerman MG, Kauffman RC, et al. Rapid generation of neutralizing antibody responses in COVID-19 patients. Cell Rep Med 2020;1:100040. Suthar MS Zimmerman MG Kauffman RC Rapid generation of neutralizing antibody responses in COVID-19 patients . Cell Rep Med 2020 ; 1 : 100040 . 10.1016/j.xcrm.2020.100040727630232835303 Search in Google Scholar

Luchsinger LL, Ransegnola B, Jin D, et al. Serological analysis of New York City COVID19 convalescent plasma donors. medRxiv 2020 June 9;2020.06.08.20124792. Luchsinger LL Ransegnola B Jin D Serological analysis of New York City COVID19 convalescent plasma donors . medRxiv 2020 June 9 ; 2020.06.08.20124792 . Search in Google Scholar

Corthesy B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front Immunol 2013;4:185. Corthesy B . Multi-faceted functions of secretory IgA at mucosal surfaces . Front Immunol 2013 ; 4 : 185 . 10.3389/fimmu.2013.00185370941223874333 Search in Google Scholar

Frey A, Di Canzio J, Zurakowski D. A statistically defined endpoint titer determination method for immunoassays. J Immunol Methods 1998;221: 35–41. Frey A Di Canzio J Zurakowski D . A statistically defined endpoint titer determination method for immunoassays . J Immunol Methods 1998 ; 221 : 35 41 . 10.1016/S0022-1759(98)00170-79894896 Search in Google Scholar

Ramakrishnan MA. Determination of 50% endpoint titer using a simple formula. World J Virol 2016;5:85–6. Ramakrishnan MA . Determination of 50% endpoint titer using a simple formula . World J Virol 2016 ; 5 : 85 6 . 10.5501/wjv.v5.i2.85486187527175354 Search in Google Scholar

Spackman E, Malladi S, Ssematimba A, Stephens CB. Assessment of replicate numbers for titrating avian influenza virus using dose-response models. J Vet Diagn Invest 2019;31:616–9. Spackman E Malladi S Ssematimba A Stephens CB . Assessment of replicate numbers for titrating avian influenza virus using dose-response models . J Vet Diagn Invest 2019 ; 31 : 616 9 . 10.1177/1040638719853851685702231131714 Search in Google Scholar

Stowe RP, Ruiz RJ, Fagundes CP, Stowe RH, Chen M, Glaser R. An ELISA method to compute endpoint titers to Epstein-Barr virus and cytomegalovirus: application to population-based studies. J Immunol Methods 2014;408:64–9. Stowe RP Ruiz RJ Fagundes CP Stowe RH Chen M Glaser R . An ELISA method to compute endpoint titers to Epstein-Barr virus and cytomegalovirus: application to population-based studies . J Immunol Methods 2014 ; 408 : 64 9 . 10.1016/j.jim.2014.05.006409811624859346 Search in Google Scholar

Balingit JC, Ly MHP, Matsuda M, et al. A simple and high-throughput ELISA-based neutralization assay for the determination of anti-flavivirus neutralizing antibodies. Vaccines (Basel) 2020;8:297. Balingit JC Ly MHP Matsuda M A simple and high-throughput ELISA-based neutralization assay for the determination of anti-flavivirus neutralizing antibodies . Vaccines (Basel) 2020 ; 8 : 297 . 10.3390/vaccines8020297735001532532141 Search in Google Scholar

Pujadas E, Ibeh N, Hernandez MM, et al. Comparison of SARS-CoV-2 detection from nasopharyngeal swab samples by the Roche cobas 6800 SARS-CoV-2 test and a laboratory-developed real-time RT-PCR test. J Med Virol 2020;92: 1695–8. Pujadas E Ibeh N Hernandez MM Comparison of SARS-CoV-2 detection from nasopharyngeal swab samples by the Roche cobas 6800 SARS-CoV-2 test and a laboratory-developed real-time RT-PCR test . J Med Virol 2020 ; 92 : 1695 8 . 10.1002/jmv.25988726754632383179 Search in Google Scholar

Xu P, Sun GD, Li ZZ. Clinical characteristics of two human-to-human transmitted coronaviruses: corona virus disease 2019 vs. Middle East respiratory syndrome coronavirus. Eur Rev Med Pharmacol Sci 2020;24:5797–809. Xu P Sun GD Li ZZ . Clinical characteristics of two human-to-human transmitted coronaviruses: corona virus disease 2019 vs. Middle East respiratory syndrome coronavirus . Eur Rev Med Pharmacol Sci 2020 ; 24 : 5797 809 . Search in Google Scholar

Huang JL, Lin HT, Wang YM, et al. Rapid and sensitive detection of multiple genes from the SARS-coronavirus using quantitative RT-PCR with dual systems. J Med Virol 2005;77:151–8. Huang JL Lin HT Wang YM Rapid and sensitive detection of multiple genes from the SARS-coronavirus using quantitative RT-PCR with dual systems . J Med Virol 2005 ; 77 : 151 8 . 10.1002/jmv.20432716650216121372 Search in Google Scholar

GraphPad Prism 8. 2020. Available from https://www.graphpad.com/scientific-software/prism/. Accessed 2020. GraphPad Prism GraphPad Prism 8 GraphPad Prism 8. 2020 . Available from https://www.graphpad.com/scientific-software/prism/ . Accessed 2020 . Search in Google Scholar

Kohn LT, Corrigan JM, Donaldson MS, Eds. To Err is Human: Building a Safer Health System. Washington, DC: National Academic Press, 2000. Kohn LT Corrigan JM Donaldson MS , Eds. To Err is Human: Building a Safer Health System . Washington, DC : National Academic Press , 2000 . Search in Google Scholar

Python 3.0 Release. 2020. Available from https://www.python.org/download/releases/3.0. Accessed 2020. Python 3.0 Release Python 3.0 . 2020 . Available from https://www.python.org/download/releases/3.0 . Accessed 2020 . Search in Google Scholar

Roback JD, Guarner J. Convalescent plasma to treat COVID-19: possibilities and challenges. JAMA 2020;323:1561–2. Roback JD Guarner J . Convalescent plasma to treat COVID-19: possibilities and challenges . JAMA 2020 ; 323 : 1561 2 . 10.1001/jama.2020.494032219429 Search in Google Scholar

Gharbharan A, Jordans CCE, Geurtsvankessel C, et al. Convalescent plasma for COVID-19; A randomized clinical trial. medRxiv 2020.07.01.20139857. Gharbharan A Jordans CCE Geurtsvankessel C Convalescent plasma for COVID-19; A randomized clinical trial . medRxiv 2020 .07.01.20139857. Search in Google Scholar

Agarwal A, Mukherjee A, Kumar G, et al. Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ 2020;371:m3939. Agarwal A Mukherjee A Kumar G Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial) . BMJ 2020 ; 371 : m3939 . 10.1136/bmj.m3939757866233093056 Search in Google Scholar

Eckhardt CM, Cummings MJ, Rajagopalan KN, et al. Evaluating the efficacy and safety of human anti-SARS-CoV-2 convalescent plasma in severely ill adults with COVID-19: a structured summary of a study protocol for a randomized controlled trial. Trials 2020;21:499. Eckhardt CM Cummings MJ Rajagopalan KN Evaluating the efficacy and safety of human anti-SARS-CoV-2 convalescent plasma in severely ill adults with COVID-19: a structured summary of a study protocol for a randomized controlled trial . Trials 2020 ; 21 : 499 . 10.1186/s13063-020-04422-y727697432513308 Search in Google Scholar

Zerra PE, Cox C, Baldwin WH, et al. Marginal zone B cells are critical to factor VIII inhibitor formation in mice with hemophilia A. Blood 2017;130:2559–68. Zerra PE Cox C Baldwin WH Marginal zone B cells are critical to factor VIII inhibitor formation in mice with hemophilia A . Blood 2017 ; 130 : 2559 68 . 10.1182/blood-2017-05-782912572128228978569 Search in Google Scholar

Kempton CL, Meeks SL. Toward optimal therapy for inhibitors in hemophilia. Hematology Am Soc Hematol Educ Program 2014;2014:364–71. Kempton CL Meeks SL . Toward optimal therapy for inhibitors in hemophilia . Hematology Am Soc Hematol Educ Program 2014 ; 2014 : 364 71 . 10.1182/asheducation-2014.1.36425696880 Search in Google Scholar

Strandenes G, Berséus O, Cap AP, et al. Low titer group O whole blood in emergency situations. Shock 2014;41(Suppl 1):70–5. Strandenes G Berséus O Cap AP Low titer group O whole blood in emergency situations . Shock 2014 ; 41 ( Suppl 1 ): 70 5 . 10.1097/SHK.000000000000015024569505 Search in Google Scholar

Stowell SR, Stowell CP. Biologic roles of the ABH and Lewis histo-blood group antigens part II: thrombosis, cardiovascular disease and metabolism. Vox Sang 2019;114:426–42. Stowell SR Stowell CP . Biologic roles of the ABH and Lewis histo-blood group antigens part II: thrombosis, cardiovascular disease and metabolism . Vox Sang 2019 ; 114 : 426 42 . 10.1111/vox.1278731070258 Search in Google Scholar

Bloch EM, Shoham S, Casadevall A, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest 2020;130:2757–65. Bloch EM Shoham S Casadevall A Deployment of convalescent plasma for the prevention and treatment of COVID-19 . J Clin Invest 2020 ; 130 : 2757 65 . 10.1172/JCI138745725998832254064 Search in Google Scholar

Denomme GA, Anani WQ. ABO titers: harmonization and identifying clinically relevant ABO antibodies. Transfusion 2020;60:441–3. Denomme GA Anani WQ . ABO titers: harmonization and identifying clinically relevant ABO antibodies . Transfusion 2020 ; 60 : 441 3 . 10.1111/trf.1572632128831 Search in Google Scholar

Adcock DM, Favaloro EJ. Pearls and pitfalls in factor inhibitor assays. Int J Lab Hematol 2015;37(Suppl 1):52–60. Adcock DM Favaloro EJ . Pearls and pitfalls in factor inhibitor assays . Int J Lab Hematol 2015 ; 37 ( Suppl 1 ): 52 60 . 10.1111/ijlh.1235225976961 Search in Google Scholar

Katz LM. (A little) clarity on convalescent plasma for Covid-19. N Engl J Med 2021;384:666–8. Katz LM . (A little) clarity on convalescent plasma for Covid-19 . N Engl J Med 2021 ; 384 : 666 8 . 10.1056/NEJMe2035678782198233440086 Search in Google Scholar

Verkerke HP, Maier CL. Towards characterized convalescent plasma for COVID-19: the dose matters. EClinicalMedicine 2020;26:100545. Verkerke HP Maier CL . Towards characterized convalescent plasma for COVID-19: the dose matters . EClinicalMedicine 2020 ; 26 : 100545 . 10.1016/j.eclinm.2020.100545750152632984783 Search in Google Scholar

Garcia-Beltran WF, Lam EC, Astudillo MG, et al. COVID-19-neutralizing antibodies predict disease severity and survival. Cell 2021;184:476–488.e11. Garcia-Beltran WF Lam EC Astudillo MG COVID-19-neutralizing antibodies predict disease severity and survival . Cell 2021 ; 184 : 476 488.e11 . 10.1016/j.cell.2020.12.015783711433412089 Search in Google Scholar

Li L, Zhang W, Hu Y, et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial. JAMA 2020;324:460–70. Li L Zhang W Hu Y Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial . JAMA 2020 ; 324 : 460 70 . 10.1001/jama.2020.10044727088332492084 Search in Google Scholar

Horby P, Lim WS, Emberson JR, et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med 2021;384:693–704. Horby P Lim WS Emberson JR Dexamethasone in hospitalized patients with Covid-19 . N Engl J Med 2021 ; 384 : 693 704 . 10.1056/NEJMoa2021436738359532678530 Search in Google Scholar

Woodruff MC, Ramonell RP, Lee FE, Sanz I. Broadly-targeted autoreactivity is common in severe SARS-CoV-2 infection. medRxiv 2020 Oct 23;2020.10.21.20216192. Woodruff MC Ramonell RP Lee FE Sanz I . Broadly-targeted autoreactivity is common in severe SARS-CoV-2 infection . medRxiv 2020 Oct 23 ; 2020 .10.21.20216192. Search in Google Scholar

Devreese KMJ, Linskens EA, Benoi D, Peperstraete H. Antiphospholipid antibodies in patients with COVID-19: a relevant observation? J Thromb Haemost 2020;18:2191–2201. Devreese KMJ Linskens EA Benoi D Peperstraete H . Antiphospholipid antibodies in patients with COVID-19: a relevant observation? J Thromb Haemost 2020 ; 18 : 2191 2201 . 10.1111/jth.14994736125332619328 Search in Google Scholar

Khamsi R. Rogue antibodies could be driving severe COVID-19. Nature 2021;590:29–31. Khamsi R . Rogue antibodies could be driving severe COVID-19 . Nature 2021 ; 590 : 29 31 . 10.1038/d41586-021-00149-133469204 Search in Google Scholar

Holst LB, Haase N, Wetterslev J, et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med 2014;371:1381–91. Holst LB Haase N Wetterslev J Lower versus higher hemoglobin threshold for transfusion in septic shock . N Engl J Med 2014 ; 371 : 1381 91 . 10.1056/NEJMoa140661725270275 Search in Google Scholar

Sparger KA, Assmann SF, Granger S, et al. Platelet transfusion practices among very-low-birth-weight infants. JAMA Pediatr 2016;170:687–94. Sparger KA Assmann SF Granger S Platelet transfusion practices among very-low-birth-weight infants . JAMA Pediatr 2016 ; 170 : 687 94 . 10.1001/jamapediatrics.2016.0507637727927213618 Search in Google Scholar

Curley A, Stanworth SJ, Willoughby K, et al. Randomized trial of platelet-transfusion thresholds in neonates. N Engl J Med 2019;380:242–51. Curley A Stanworth SJ Willoughby K Randomized trial of platelet-transfusion thresholds in neonates . N Engl J Med 2019 ; 380 : 242 51 . 10.1056/NEJMoa180732030387697 Search in Google Scholar

Chou ST, Alsawas M, Fasano RM, et al. American Society of Hematology 2020 guidelines for sickle cell disease: transfusion support. Blood Adv 2020;4:327–55. Chou ST Alsawas M Fasano RM American Society of Hematology 2020 guidelines for sickle cell disease: transfusion support . Blood Adv 2020 ; 4 : 327 55 . 10.1182/bloodadvances.2019001143698839231985807 Search in Google Scholar

Thein SL, Pirenne F, Fasano RM, et al. Hemolytic transfusion reactions in sickle cell disease: underappreciated and potentially fatal. Haematologica 2020;105:539–44. Thein SL Pirenne F Fasano RM Hemolytic transfusion reactions in sickle cell disease: underappreciated and potentially fatal . Haematologica 2020 ; 105 : 539 44 . 10.3324/haematol.2019.224709704933032029505 Search in Google Scholar

Cohn CS. Platelet transfusion refractoriness: how do I diagnose and manage? Hematology Am Soc Hematol Educ Program 2020;2020:527–32. Cohn CS . Platelet transfusion refractoriness: how do I diagnose and manage? Hematology Am Soc Hematol Educ Program 2020 ; 2020 : 527 32 . 10.1182/hematology.2020000137772758433275694 Search in Google Scholar

Arthur CM, Patel SR, Sullivan HC, et al. CD8+ T cells mediate antibody-independent platelet clearance in mice. Blood 2016;127:1823–7. Arthur CM Patel SR Sullivan HC CD8+ T cells mediate antibody-independent platelet clearance in mice . Blood 2016 ; 127 : 1823 7 . 10.1182/blood-2015-10-673426482541526787734 Search in Google Scholar

Joyner MJ, Senefeld JW, Klassen SA, et al. Effect of convalescent plasma on mortality among hospitalized patients with COVID-19: initial three-month experience. medRxiv 2020 Aug 12;2020.08.12.20169359. Joyner MJ Senefeld JW Klassen SA Effect of convalescent plasma on mortality among hospitalized patients with COVID-19: initial three-month experience . medRxiv 2020 Aug 12 ; 2020 .08.12.20169359. 10.1101/2020.08.12.20169359743062332817978 Search in Google Scholar

Ezzelle J, Rodriguez-Chavez IR, Darden JM, et al. Guidelines on good clinical laboratory practice: bridging operations between research and clinical research laboratories. J Pharm Biomed Anal 2008;46:18–29. Ezzelle J Rodriguez-Chavez IR Darden JM Guidelines on good clinical laboratory practice: bridging operations between research and clinical research laboratories . J Pharm Biomed Anal 2008 ; 46 : 18 29 . 10.1016/j.jpba.2007.10.010221390618037599 Search in Google Scholar

Kubina R, Dziedzic A. Molecular and serological tests for COVID-19: a comparative review of SARS-CoV-2 coronavirus laboratory and point-of-care diagnostics. Diagnostics (Basel) 2020;10:434. Kubina R Dziedzic A . Molecular and serological tests for COVID-19: a comparative review of SARS-CoV-2 coronavirus laboratory and point-of-care diagnostics . Diagnostics (Basel) 2020 ; 10 : 434 . 10.3390/diagnostics10060434734521132604919 Search in Google Scholar

Lisboa Bastos M, Tavaziva G, Kunal Abidi S, et al. Diagnostic accuracy of serological tests for COVID-19: systematic review and meta-analysis. BMJ 2020;370:m2516. Lisboa Bastos M Tavaziva G Kunal Abidi S Diagnostic accuracy of serological tests for COVID-19: systematic review and meta-analysis . BMJ 2020 ; 370 : m2516 . 10.1136/bmj.m2516732791332611558 Search in Google Scholar

eISSN:
1930-3955
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, Laboratory Medicine