Nécessite une authentification

P1PK: The blood group system that changed its name and expanded

À propos de cet article

Citez

Landsteiner K, Levine P. Further observations on individual differences of human blood. Proc Soc Exp Biol 1927;24:941–2.10.3181/00379727-24-3649Search in Google Scholar

Levine P, Bobbitt OB, Waller RK, Kuhmichel A. Isoimmunization by a new blood factor in tumor cells. Proc Soc Exp Biol Med 1951;77:403–5.10.3181/00379727-77-18794Search in Google Scholar

Sanger R. An association between the P and Jay systems of blood groups. Nature 1955;176:1163–4.10.1038/1761163a0Search in Google Scholar

Matson GA, Swanson J, Noades J, Sanger R, Race RR. A “new” antigen and antibody belonging to the P blood group system. Amer J Hum Genet 1959;11:26–34.Search in Google Scholar

Race RR, Sanger R. Blood groups in man. 5th ed. Oxford, Edinburgh: Blackwell Scientific, 1968.Search in Google Scholar

Naiki M, Marcus DM. Human erythrocyte P and Pk blood group antigens: identification as glycosphingolipids. Biochem Biophys Res Commun 1974;60:1105–11.10.1016/0006-291X(74)90426-4Search in Google Scholar

Hellberg Å, Poole J, Olsson ML. Molecular basis of the globoside-deficient Pk blood group phenotype. Identification of four inactivating mutations in the UDP-N-acetylgalactosamine: globotriaosylceramide 3-beta-N-acetylgalactosaminyltransferase gene. J Biol Chem 2002;277:29455–9.10.1074/jbc.M20304720012023287Search in Google Scholar

Daniels GL, Fletcher A, Garratty G, et al. Blood group terminology 2004: from the International Society of Blood Transfusion committee on terminology for red cell surface antigens. Vox Sang 2004;87:304–16.10.1111/j.1423-0410.2004.00564.x15585029Search in Google Scholar

Storry JR, Castilho L, Daniels G, et al. International Society of Blood Transfusion Working Party on red cell immunogenetics and blood group terminology: Berlin report. Vox Sang 2011; 101:77–82.10.1111/j.1423-0410.2010.01462.x549784821401621Search in Google Scholar

Reid ME, Lomas-Francis C, Olsson ML. The blood group antigen factsbook. 3rd ed. London: Academic Press, 2012.10.1016/B978-0-12-415849-8.00026-0Search in Google Scholar

Hellberg Å, Westman JS, Olsson ML. An update on the GLOB blood group system and collection. Immunohematology 2013;29:19–24.10.21307/immunohematology-2019-119Search in Google Scholar

Knapp W, Dorken B, Rieber P, Schmidt RE, Stein H, Von Dem Borne AE. CD antigens 1989. Blood 1989;74:1448–50.10.1182/blood.V74.4.1448.1448Search in Google Scholar

Thudichum JLW. A treatise on the chemical constituents of the brain (a facsimile edition of the original, 1962), London: Baillière, Tindall and Cox, 1884.Search in Google Scholar

Hakomori S. Structure, organization, and function of glycosphingolipids in membrane. Curr Opin Hematol 2003; 10:16–24.10.1097/00062752-200301000-00004Search in Google Scholar

Sandhoff K, Kolter T. Biosynthesis and degradation of mammalian glycosphingolipids. Philos Trans R. Soc Lond B Biol Sci 2003;358:847–61.10.1098/rstb.2003.1265Search in Google Scholar

Morgan WT, Watkins WM. Blood group P1 substance. I. Chemical properties. Bibl Haematol 1964;19:225–9.Search in Google Scholar

Marcus DM. Isolation of a substance with blood-group P1 activity for human erythrocyte stroma. Transfusion 1971; 11:16–8.10.1111/j.1537-2995.1971.tb04368.xSearch in Google Scholar

Siddiqui B, Hakomori S. A revised structure for the Forssman glycolipid hapten. J Biol Chem 971;246: 5766–9.10.1016/S0021-9258(18)61871-XSearch in Google Scholar

Svensson L, Hult AK, Stamps R, Angstrom J, Teneberg S, Storry JR, Jorgensen R, Rydberg L, Henry SM, Olsson ML. Forssman expression on human erythrocytes: biochemical and genetic evidence of a new histo-blood group system. Blood 2013;121:1459–68.10.1182/blood-2012-10-455055Search in Google Scholar

Rydberg L, Cedergren B, Breimer ME, Lindstrom K, Nyholm PG, Samuelsson BE. Serological and immunochemical characterization of anti-PP1Pk (anti-Tja) antibodies in blood group little p individuals. Blood group A type 4 recognition due to internal binding. Mol Immunol 1992;29:1273–86.10.1016/0161-5890(92)90064-5Search in Google Scholar

Yang Z, Bergström J, Karlsson KA. Glycoproteins with Gal alpha 4Gal are absent from human erythrocyte membranes, indicating that glycolipids are the sole carriers of blood group P activities. J Biol Chem 1994;269:14620–4.10.1016/S0021-9258(17)36669-3Search in Google Scholar

Olsson ML, Peyrard T, Hult AK, et al. PX2: A new blood group antigen with implications for transfusion recommendations in P1k and P2k individuals. Vox Sang 2011;101:1–79.Search in Google Scholar

Mourant AE, Kopec AC, Domaniewska-Sobczak K. The distribution of human blood groups and other polymorphisms: (monographs on medical genetics). 2nd ed. London: Oxford University Press, 1976.Search in Google Scholar

Ikin EW, Kay HEM, Playfair JHL, Mourant AE. P1 antigen in the human fetus. Nature 1961;192:883–4.10.1038/192883a0Search in Google Scholar

Heiken A. Observations on the blood group receptor P1 and its development in children. Hereditas 1966;56:83–98.10.1111/j.1601-5223.1966.tb02064.xSearch in Google Scholar

Fisher R. The variation in the strength of the human blood group P. Heredity 1953;7:81–9.10.1038/hdy.1953.7Search in Google Scholar

Thuresson B, Westman JS, Olsson ML. Identification of a novel A4GALT exon reveals the genetic basis of the P1/P2 histo-blood groups. Blood 2011;117:678–87.10.1182/blood-2010-08-301333Search in Google Scholar

Crawford MN, Tippett P, Sanger R. Antigens Aua, i and P1 of cells of the dominant type of Lu(a–b–). Vox Sang 1974; 26:283–7.Search in Google Scholar

Singleton BK, Burton NM, Green C, Brady RL, Anstee DJ. Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype. Blood 2008;112:2081–8.10.1182/blood-2008-03-145672Search in Google Scholar

Fellous M, Gerbal A, Tessier C, Frezal J, Dausset J, Salmon C. Studies on the biosynthetic pathway of human P erythrocyte antigens using somatic cells in culture. Vox Sang 1974; 26:518–36.10.1111/j.1423-0410.1974.tb02729.xSearch in Google Scholar

Fletcher KS, Bremer EG, Schwarting GA. P blood group regulation of glycosphingolipid levels in human erythrocytes. J Biol Chem 1979;254:11196–8.10.1016/S0021-9258(19)86468-2Search in Google Scholar

Kundu SK, Steane SM, Bloom JE, Marcus DM. Abnormal glycolipid composition of erythrocytes with a weak P antigen. Vox Sang 1978;35:160–7.10.1111/j.1423-0410.1978.tb02916.x676244Search in Google Scholar

Kundu SK, Evans A, Rizvi J, Glidden H, Marcus DM. A new Pk phenotype in the P blood group system. J Immunogenet 1980;7:431–9.10.1111/j.1744-313X.1980.tb00738.xSearch in Google Scholar

Race RR, Sanger R. Blood Groups in Man. Oxford, UK: Blackwell Scientific Publications, 1975.Search in Google Scholar

Cedergren B. Population studies in northern Sweden. IV. Frequency of the blood type p. Hereditas 1973;73:27–30.10.1111/j.1601-5223.1973.tb01063.xSearch in Google Scholar

Miwa S, Matuhasi T, Yasuda J. p phenotype in two successive generations of a Japanese family. Vox Sang 1974;26:565–7.10.1111/j.1423-0410.1974.tb02733.x4847946Search in Google Scholar

Obregon E, McKeever BG. Studies on offspring of pp mothers (abstract). Transfusion 1980;20:621–2.Search in Google Scholar

Levene C, Shinar E, Yahalom V. Rare blood group p Tj(a–) in Israel 1975–1999 (abstract). Vox Sang 2000;78S1:P010.Search in Google Scholar

Arndt PA, Garratty G, Marfoe RA, Zeger GD. An acute hemolytic transfusion reaction caused by an anti-P1 that reacted at 37 degrees C. Transfusion 1998;38:373–7.10.1046/j.1537-2995.1998.38498257376.x9595020Search in Google Scholar

Chandeysson PL, Flye MW, Simpkins SM, Holland PV. Delayed hemolytic transfusion reaction caused by anti-P1 antibody. Transfusion 1981;21:77–82.10.1046/j.1537-2995.1981.21181127489.x7466910Search in Google Scholar

Issitt PD, Anstee DJ. Applied Blood Group Serology. Miami, FL, USA: Montgomery Scientific Publications, 1998.Search in Google Scholar

Cantin G, Lyonnais J. Anti-PP1Pk and early abortion. Transfusion 1983;23:350–1.10.1046/j.1537-2995.1983.23483276877.xSearch in Google Scholar

Lindstrom K, Von Dem Borne AE, Breimer ME, et al. Glycosphingolipid expression in spontaneously aborted fetuses and placenta from blood group p women. Evidence for placenta being the primary target for anti-Tja-antibodies. Glycoconj 1992;9:325–9.10.1007/BF00731093Search in Google Scholar

Hellberg Å, Steffensen R, Yahalom V, et al. Additional molecular bases of the clinically important p blood group phenotype. Transfusion 2003;43:899–907.10.1046/j.1537-2995.2003.00425.xSearch in Google Scholar

Harris PA, Roman GK, Moulds JJ, Bird GW, Shah NG. An inherited RBC characteristic, NOR, resulting in erythrocyte polyagglutination. Vox Sang 1982;42:134–40.10.1111/j.1423-0410.1982.tb01083.xSearch in Google Scholar

Kusnierz-Alejska G, Duk M, Storry JR, et al. NOR polyagglutination and Sta glycophorin in one family: relation of NOR polyagglutination to terminal alpha-galactose residues and abnormal glycolipids. Transfusion 1999;39:32–8.10.1046/j.1537-2995.1999.39199116892.xSearch in Google Scholar

Steffensen R, Carlier K, Wiels J, et al. Cloning and expression of the histo-blood group Pk UDP-galactose: Gal-beta1-4Glc-beta1-Cer alpha1,4-galactosyltransferase. Molecular genetic basis of the p phenotype. J Biol Chem 2000;275:16723–9.10.1074/jbc.M000728200Search in Google Scholar

Keusch JJ, Manzella SM, Nyame KA, Cummings RD, Baenziger JU. Cloning of Gb3 synthase, the key enzyme in globo-series glycosphingolipid synthesis, predicts a family of alpha 1, 4-glycosyltransferases conserved in plants, insects, and mammals. J Biol Chem 2000;275:25315–21.10.1074/jbc.M002630200Search in Google Scholar

Kojima Y, Fukumoto S, Furukawa K, et al. Molecular cloning of globotriaosylceramide/CD77 synthase, a glycosyltransferase that initiates the synthesis of globo series glycosphingolipids. J Biol Chem 2000;275:15152–6.10.1074/jbc.M909620199Search in Google Scholar

Paulson JC, Colley KJ. Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J Biol Chem 1989;264:17615–18.Search in Google Scholar

Breton C, Imberty A. Structure/function studies of glycosyltransferases. Curr Opin Struct Biol 1999;9:563–71.10.1016/S0959-440X(99)00006-8Search in Google Scholar

Hughes AK, Ergonul Z, Stricklett PK, Kohan DE. Molecular basis for high renal cell sensitivity to the cytotoxic effects of shigatoxin-1: upregulation of globotriaosylceramide expression. J Am Soc Nephrol 2002;13:2239–45.10.1097/01.ASN.0000027873.85792.52Search in Google Scholar

Okuda T, Nakayama K. Identification and characterization of the human Gb3/CD77 synthase gene promoter. Glycobiology 2008;18:1028–35.10.1093/glycob/cwn082Search in Google Scholar

Naiki M, Marcus DM. An immunochemical study of the human blood group P1, P, and PK glycosphingolipid antigens. Biochemistry 1975;14:4837–41.10.1021/bi00693a010Search in Google Scholar

Bailly P, Piller F, Gillard B, Veyrières A, Marcus D, Cartron JP. Biosynthesis of the blood group Pk and P1 antigens by human kidney microsomes. Carbohyd Res 1992;228:277–87.10.1016/S0008-6215(00)90565-2Search in Google Scholar

Graham HA, Williams AN. A genetic model for the inheritance of the P, P1 and Pk antigens. Immunol Commun 1980;9: 191–201.10.3109/088201380090659936772545Search in Google Scholar

Iwamura K, Furukawa K, Uchikawa M, et al. The blood group P1 synthase gene is identical to the Gb3/CD77 synthase gene. A clue to the solution of the P1/P2/p puzzle. J Biol Chem 2003; 278:44429–38.10.1074/jbc.M30160920012888565Search in Google Scholar

Hellberg Å, Chester MA, Olsson ML. Two previously proposed P1/P2-differentiating and nine novel polymorphisms at the A4GALT (Pk) locus do not correlate with the presence of the P1 blood group antigen. BMC Genet 2005;6:49.10.1186/1471-2156-6-49128256616212661Search in Google Scholar

Tilley L, Green C, Daniels G. Sequence variation in the 5¢untranslated region of the human A4GALT gene is associated with, but does not define, the P1 blood-group polymorphism. Vox Sang 2006;90:198–203.10.1111/j.1423-0410.2006.00746.x16507021Search in Google Scholar

Suzuki N, Yamamoto K. Molecular cloning of pigeon UDP-galactose:beta-D-galactoside alpha1,4-galactosyltransferase and UDP-galactose:beta-D-galactoside beta1,4-galactosyltransferase, two novel enzymes catalyzing the formation of Gal alpha1-4Gal beta1-4Gal beta1-4GlcNAc sequence. J Biol Chem 2010;285:5178–87.10.1074/jbc.M109.018663282074519959475Search in Google Scholar

Wang Y, Lin K, Lin K, Hung C, Lin T. P1/P2 Genotype Screening in Southern Taiwan (abstract). Transfusion 2012;52 (Suppl):161A.Search in Google Scholar

Hellberg Å, Ringressi A, Yahalom V, Säfwenberg J, Reid ME, Olsson ML. Genetic heterogeneity at the glycosyltransferase loci underlying the GLOB blood group system and collection. Br J Haematol 2004;125:528–36.10.1111/j.1365-2141.2004.04930.x15142124Search in Google Scholar

Hellberg Å, Schmidt-Melbye AC, Reid ME, Olsson ML. Expression of a novel missense mutation found in the A4GALT gene of Amish individuals with the p phenotype. Transfusion 2008;48:479–87.10.1111/j.1537-2995.2007.01552.x18067504Search in Google Scholar

Suchanowska A, Kaczmarek R, Duk M, et al. A single point mutation in the gene encoding Gb3/CD77 synthase causes a rare inherited polyagglutination syndrome. J Biol Chem 2012;287:38220–30.10.1074/jbc.M112.408286Search in Google Scholar

Duk M, Singh S, Reinhold VN, Krotkiewski H, Kurowska E, Lisowska E. Structures of unique globoside elongation products present in erythrocytes with a rare NOR phenotype. Glycobiology 2007;17:304–12.10.1093/glycob/cwl071Search in Google Scholar

Fujii Y, Numata S, Nakamura Y, et al. Murine glycosyltransferases responsible for the expression of globo-series glycolipids: cDNA structures, mRNA expression, and distribution of their products. Glycobiology 2005;15:1257–67.10.1093/glycob/cwj015Search in Google Scholar

Zoja C, Corna D, Farina C, et al. Verotoxin glycolipid receptors determine the localization of microangiopathic process in rabbits given verotoxin-1. J Lab Clin Med 1992;120:229–38.Search in Google Scholar

Daniels G. Human blood groups. Oxford, UK: Blackwell Scientific, 2002.10.1002/9780470987018Search in Google Scholar

Mandrell RE. Further antigenic similarities of Neisseria gonorrhoeaelipooligosaccharides and human glycosphingolipids. Infection Immun 1992;60:3017–20.10.1128/iai.60.7.3017-3020.1992Search in Google Scholar

Suzuki A, Karol RA, Kundu SK, Marcus DM. Glycosphingolipids of K562 cells: a chemical and immunological analysis. Int J Cancer 1981;28:271–6.10.1002/ijc.2910280304Search in Google Scholar

Svennerholm E, Svennerholm L. The separation of neutral blood-serum glycolipids by thin-layer chromatography. Biochim Biophys Acta 1963;70:432–41.10.1016/0006-3002(63)90773-XSearch in Google Scholar

Ingolfsdottir R, Hult A, Olsson ML. Flow cytometric assessment of carbohydrate histo-blood group expression on leucocyte subpopulations (abstract). Vox Sang 2010;99:394.Search in Google Scholar

Kasai K, Galton J, Terasaki PI, et al. Tissue distribution of the Pk antigen as determined by a monoclonal antibody. J Immunogenet 1985;12:213–20.10.1111/j.1744-313X.1985.tb00848.x3914518Search in Google Scholar

Mangeney M, Richard Y, Coulaud D, Tursz T, Wiels J. CD77: an antigen of germinal center B cells entering apoptosis. Eur J Immunol 1991;21:1131–40.10.1002/eji.18302105071709864Search in Google Scholar

Zumbrun SD, Hanson L, Sinclair JF, et al. Human intestinal tissue and cultured colonic cells contain globotriaosylceramide synthase mRNA and the alternate Shiga toxin receptor globotetraosylceramide. Infect Immun 2010;78:4488–99.10.1128/IAI.00620-10297636420732996Search in Google Scholar

Lund N, Olsson ML, Ramkumar S, Sakac D, Yahalom V, Levene C, Hellberg Å, Ma XZ, Binnington B, Jung D, Lingwood CA, Branch DR. The human P(k) histo-blood group antigen provides protection against HIV-1 infection. Blood 2009; 113:4980–91.10.1182/blood-2008-03-143396Search in Google Scholar

Harrison AL, Olsson ML, Jones RB, et al. A synthetic globotriaosylceramide analogue inhibits HIV-1 infection in vitro by two mechanisms. Glycoconj J 2010;27:515–24.10.1007/s10719-010-9297-ySearch in Google Scholar

Moulds JM, Moulds JJ. Blood group associations with parasites, bacteria, and viruses. Transfus Med Rev 2000;14: 302–11.10.1053/tmrv.2000.16227Search in Google Scholar

Ziegler T, Jacobsohn N, Funfstuck R. Correlation between blood group phenotype and virulence properties of Escherichia coliin patients with chronic urinary tract infection. Int J Antimicrob Agents 2004;24(Suppl 1):S70–5.10.1016/j.ijantimicag.2004.03.002Search in Google Scholar

Haataja S, Tikkanen K, Liukkonen J, Francois-Gerard C, Finne J. Characterization of a novel bacterial adhesion specificity of Streptococcus suisrecognizing blood group P receptor oligosaccharides. J Biol Chem 1993;268:4311–7.10.1016/S0021-9258(18)53611-5Search in Google Scholar

Johannes L, Romer W. Shiga toxins—from cell biology to biomedical applications. Nat Rev Microbiol 2010;8:105–16.10.1038/nrmicro2279Search in Google Scholar

Lingwood CA, Law H, Richardson S, Petric M, Brunton JL, De Grandis S, Karmali M. Glycolipid binding of purified and recombinant Escherichia coliproduced verotoxin in vitro. J Biol Chem 1987;262:8834–9.10.1016/S0021-9258(18)47490-XSearch in Google Scholar

Blanchard B, Nurisso A, Hollville E, Tetaud C, Wiels J, Pokorna M, Wimmerova M, Varrot A, Imberty A. Structural basis of the preferential binding for globo-series glycosphingolipids displayed by Pseudomonas aeruginosalectin I. J Mol Biol 2008;383:837–53.10.1016/j.jmb.2008.08.02818762193Search in Google Scholar

Lund N, Branch DR, Sakac D, Lingwood CA, Siatskas C, Robinson CJ, Brady RO, Medin JA. Lack of susceptibility of cells from patients with Fabry disease to productive infection with R5 human immunodeficiency virus. AIDS 2005;19:1543–6.10.1097/01.aids.0000183521.90878.7916135910Search in Google Scholar

Lund N, Branch DR, Mylvaganam M, Chark D, Ma XZ, Sakac D, Binnington B, Fantini J, Puri A, Blumenthal R, Lingwood CA. A novel soluble mimic of the glycolipid, globotriaosyl ceramide inhibits HIV infection. AIDS 2006;20:333–43.10.1097/01.aids.0000206499.78664.5816439866Search in Google Scholar

Imberty A, Wimmerova M, Mitchell EP, Gilboa-Garber N. Structures of the lectins from Pseudomonas aeruginosa:insight into the molecular basis for host glycan recognition. Microbes Infect 2004;6:221–8.10.1016/j.micinf.2003.10.01615049333Search in Google Scholar

Bekri S, Lidove O, Jaussaud R, Knebelmann B, Barbey F. The role of ceramide trihexoside (globotriaosylceramide) in the diagnosis and follow-up of the efficacy of treatment of Fabry disease: a review of the literature. Cardiovasc Hematol Agents Med Chem 2006;4:289–97.10.2174/18715250677852071817073606Search in Google Scholar

Cilmi SA, Karalius BJ, Choy W, Smith RN, Butterton JR. Fabry disease in mice protects against lethal disease caused by Shiga toxin-expressing enterohemorrhagic Escherichia coli.J Infect Dis 2006;194:1135–40.10.1086/50770516991089Search in Google Scholar

Proulx F, Seidman EG, Karpman D. Pathogenesis of Shiga toxin-associated hemolytic uremic syndrome. Pediatric Research 2001;50:163–71.10.1203/00006450-200108000-0000211477199Search in Google Scholar

Furukawa K, Yokoyama K, Sato T, Wiels J, Hirayama Y, Ohta M. Expression of the Gb3/CD77 synthase gene in megakaryoblastic leukemia cells: implication in the sensitivity to verotoxins. J Biol Chem 2002;277:11247–54.10.1074/jbc.M10951920011782470Search in Google Scholar

Tétaud C, Falguieres T, Carlier K, et al. Two distinct Gb3/CD77 signaling pathways leading to apoptosis are triggered by anti-Gb3/CD77 mAb and verotoxin-1. J Biol Chem 2003;278:45200–8.10.1074/jbc.M30386820012944404Search in Google Scholar

Watarai S, Yokota K, Tana, Kishimoto T, Kanadani T, Taketa K, Oguma K. Relationship between susceptibility to hemolytic-uremic syndrome and levels of globotriaosylceramide in human sera. J Clin Microbiol 2001;39:798–800.10.1128/JCM.39.2.798-800.20018782511158156Search in Google Scholar

Okuda T, Tokuda N, Numata S, et al. Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J Biol Chem 2006;281:10230–5.10.1074/jbc.M60005720016476743Search in Google Scholar

Dwek MV, Brooks SA. Harnessing changes in cellular glycosylation in new cancer treatment strategies. Curr Cancer Drug Targets 2004;4:425–42.10.2174/156800904333289915320718Search in Google Scholar

Levine P. Illegitimate blood group antigens P1, A, and MN (T) in malignancy—a possible therapeutic approach with anti-Tja, anti-A, and anti-T. Ann Aca Sci 1976;277:428–35.10.1111/j.1749-6632.1976.tb41719.x793484Search in Google Scholar

Engedal N, Skotland T, Torgersen ML, Sandvig K. Shiga toxin and its use in targeted cancer therapy and imaging. Microb Biotechnol 2011;4:32–46.10.1111/j.1751-7915.2010.00180.x302302921255370Search in Google Scholar

eISSN:
1930-3955
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, Laboratory Medicine