Nécessite une authentification

The role of red cell genotyping in transfusion medicine

   | 26 oct. 2019
À propos de cet article

Citez

Beck ML, Tilzer LL. Red cell compatibility testing: a perspective for the future. Transfus Med Rev 1996;10:118–30.10.1016/S0887-7963(96)80088-5Search in Google Scholar

Reid ME, Yazdanbakhsh K. Molecular insights into blood groups and implications for blood transfusion. Curr Opin Hematol 1998;5:93–102.10.1097/00062752-199803000-000039570701Search in Google Scholar

Zelinski T, Coghlan G, Liu XQ, et al. ABCG2 null alleles define the Jr(a–) blood group phenotype. Nat Genet 2012;44:131–2.10.1038/ng.107522246507Search in Google Scholar

Svensson L, Hult AK, Stamps R, et al. Forssman expression on human erythrocytes: biochemical and genetic evidence of a new histo blood group system. Blood 2013;121:1459–68.10.1182/blood-2012-10-45505523255552Search in Google Scholar

Anliker M, von Zabern I, Höchsmann B, et al. A new blood group antigen is defined by anti-CD59, detected in a CD59-deficient patient. Transfusion 2014;54:1817–22.10.1111/trf.12531531720124383981Search in Google Scholar

Daniels G, Ballif BA, Helias V, et al. Lack of the nucleoside transporter ENT1 results in the Augustine-null blood type and ectopic mineralization. Blood 2015;125:3651–4.10.1182/blood-2015-03-631598445880325896650Search in Google Scholar

Bugert P, McBride S, Smith G, et al. Microarray based genotyping for blood groups: comparison of gene array and 5¢-nuclease assay techniques with human platelet antigen as a model. Transfusion 2005;45:654–9.10.1111/j.1537-2995.2005.04318.x15847651Search in Google Scholar

Beiboer SH, Wieringa-Jelsma T, Maaskant-Van Wijk PA, et al. Rapid genotyping of blood group antigens by multiplex polymerase chain reaction and DNA microarray hybridisation. Transfusion 2005;45:667–79.10.1111/j.1537-2995.2005.04319.x15847653Search in Google Scholar

Hashmi G, Shariff T, Seul M, et al. A flexible array format for large-scale, rapid blood group DNA typing. Transfusion 2005;45:680–8.10.1111/j.1537-2995.2005.04362.x15847654Search in Google Scholar

Denomme GA, van Oene M. High-throughput multiplex single-nucleotide polymorphism analysis for red cell and platelet antigen genotypes. Transfusion 2005;45:660–6.10.1111/j.1537-2995.2005.04365.x15847652Search in Google Scholar

Avent ND, Martinez A, Flegel WA, et al. The BloodGen project: toward mass-scale comprehensive genotyping of blood donors in the European Union and beyond. Transfusion 2007;47 (1 Suppl):40S–46S.10.1111/j.1537-2995.2007.01309.x17593285Search in Google Scholar

Flegel WA, Von Zaben I, Wagner FF. Six years’ experience performing RHD genotyping to confirm D– red blood cell units in Germany for preventing anti-D alloimmunization. Transfusion 2009;49:465–71.10.1111/j.1537-2995.2008.01975.x19243542Search in Google Scholar

Jungbauer C, Hobel CM, Schwartz DW, et al. High-throughput multiplex PCR genotyping for 35 red blood cell antigens in blood donors. Vox Sang 2012;102:234–42.10.1111/j.1423-0410.2011.01542.x22098427Search in Google Scholar

Veldhuisen B, van der Schoot CE, de Haas M. Blood group genotyping: from patient to high throughput donor screening. Vox Sang 2009;97:198–206.10.1111/j.1423-0410.2009.01209.x19548962Search in Google Scholar

Reid ME, Denomme GA. DNA-based methods in the immunohematology reference laboratory. Transfus Apher Sci. 2011;44:65–72.10.1016/j.transci.2010.12.011305826821257350Search in Google Scholar

Meyer S, Vollmert C, Trost N, et al. High-throughput Kell, Kidd, and Duffy matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based blood group genotyping of 4000 donors shows close to full concordance with serotyping and detects new alleles. Transfusion 2014;54:3198–207.10.1111/trf.1271524845979Search in Google Scholar

Sandler SG, Keller J, Horn T, et al. A model for integrating molecular-based testing in transfusion services. Blood Transfusion 2015. DOI 10.2450/2015.0070-15.Search in Google Scholar

Sloan SR. Transfusion for patients with sickle cell disease at Children’s Hospital Boston. Immunohematology 2012;28: 17–9.10.21307/immunohematology-2019-143Search in Google Scholar

Shafi H, Abumuhor I, Klapper E. How we incorporate molecular typing of donors and patients into our hospital transfusion service. Transfusion 2014;54:1212–9.10.1111/trf.1258224628032Search in Google Scholar

International Society of Blood Transfusion. Red cell immunogenetics and blood group terminology. www.isbtweb. org/working–parties/red–cell–immunogenetics–and–blood– group–terminology/.Search in Google Scholar

Blumenfeld OO, Patnaik SK. Allelic genes of blood group antigens: a source of human mutations and cSNPs documented in the Blood Group Antigen Gene Mutation Database. Hum Mutat 2004;23:8–16.10.1002/humu.1029614695527Search in Google Scholar

Daniels G, Finning K, Martin P. Noninvasive fetal blood grouping: present and future. Clin Lab Med 2010;30:431–42.10.1016/j.cll.2010.02.00620513561Search in Google Scholar

Reid ME. DNA analysis to find rare blood donors when antisera is not available. Vox Sang 2002;83(Suppl 1):91–3.10.1111/j.1423-0410.2002.tb05275.x12617111Search in Google Scholar

Olsson ML, Smythe JS, Hansson C, et al. The Fy(x) phenotype is associated with a missense mutation in the Fy(b) allele predicting Arge89Cys in the Duffy glycoprotein. Br J Haematol 1998;103:1184–91.10.1046/j.1365-2141.1998.01083.x9886340Search in Google Scholar

Londero D, Fiorino M, Viotti V, et al. Molecular RH blood group typing of serologically D–/CE+ donors: the use of a polymerase chain reaction specific primer test kit with pooled samples. Immunohematology 2011;27:25–8.10.21307/immunohematology-2019-171Search in Google Scholar

El Kenz H, Efira A, Le PQ, et al. Transfusion support of autoimmune hemolytic anemia: how could the blood group genotyping help? Transl Res 2014;163:36–42.10.1016/j.trsl.2013.09.00724120494Search in Google Scholar

Reid ME, Rios M, Powell VI, et al. DNA from blood samples can be used to genotype patients who have recently received a transfusion. Transfusion 2000;40:48–53.10.1046/j.1537-2995.2000.40010048.x10644811Search in Google Scholar

Arnoni CP, Latini FR, Muniz JG, et al. How do we identify RHD variants using a practical molecular approach? Transfusion 2014;54:962–9.10.1111/trf.1255724579654Search in Google Scholar

Reid ME. Applications of DNA-based assays in blood group antigen and antibody identification. Transfusion 2003;43: 1748–57.10.1111/j.0041-1132.2003.00597.x14641873Search in Google Scholar

Fasano RM, Monaco A, Meier ER, et al. RH genotyping in a sickle cell disease patient contributing to hematopoietic stem cell transplantation donor selection and management. Blood 2010;116:2836–8.10.1182/blood-2010-04-279372297459120644109Search in Google Scholar

Hashmi G, Shariff T, Zhang Y, et al. Determination of 24 minor red blood cell antigens for more than 2000 blood donors by high throughput DNA anaysis. Transfusion 2007;47:736–47.10.1111/j.1537-2995.2007.01178.x17381634Search in Google Scholar

Storry JR, Olsson ML, Reid ME. Application of DNA analysis to the quality assurance of reagent red cells. Transfusion 2007;47(Suppl 1):73S–78S.10.1111/j.1537-2995.2007.01315.x17593291Search in Google Scholar

Singleton BK, Burton NM, Green C, et al. Mutations in EKLF/ KLF1 form the molecular basis of the rare blood group In(Lu) phenotype. Blood 2008;112:2081–8.10.1182/blood-2008-03-14567218487511Search in Google Scholar

Pirelli KJ, Pietz BC, Johnson ST, et al. Molecular determination of RHD zygosity: predicting risk of hemolytic disease of the fetus and newborn related to anti-D. Prenat Diagn 2010; 30:1207–12.10.1002/pd.265221072752Search in Google Scholar

Chou ST, Jackson T, Vege S, et al. High prevalence of red blood cell alloimmunization in sickle cell disease despite transfusion from Rh-matched minority donors. Blood 2013;122:1062–71.10.1182/blood-2013-03-49062323723452Search in Google Scholar

Spanos, T, Karageorga M, Ladis V, et al. Red cell alloantibodies in patients with thalassemia. Vox Sang 1990;58:50–5.10.1111/j.1423-0410.1990.tb02055.x2316211Search in Google Scholar

Casas J, Friedman DF, Jackson T, et al. Changing practice: red blood cell typing by molecular methods for patients with sickle cell disease. Transfusion 2015;55(6 Pt 2):1388–93.10.1111/trf.12987900387625573464Search in Google Scholar

Yawn BP, Buchanan GR, Afenyi-Annan AN, et al. Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA 2014;312:1033–48.10.1001/jama.2014.1051725203083Search in Google Scholar

Klapper E, Zhang Y, Figueroa P, et al. Transfusion Practice: Toward extended phenotype matching: a new operational paradigm for the transfusion service. Transfusion 2010;50: 536–46.10.1111/j.1537-2995.2009.02462.x19929860Search in Google Scholar

Meny GM. Transfusion protocols for patients with sickle cell disease: working toward consensus? Immunohematology 2012; 28:1–2.10.21307/immunohematology-2019-139Search in Google Scholar

Sandler SG, Flegel WA, Westhoff CM, et al. It’s time to phase in RHD genotyping for patients with a serological weak D phenotype. Transfusion 2015;55:680–9.10.1111/trf.12941435754025438646Search in Google Scholar

Flegel WA, Gottschall JL, Denomme GA. Implementing mass-scale red cell genotyping at a blood center. Transfusion 2015. Jun 20. doi: 10.1111/trf.13168.10.1111/trf.13168464409126094790Search in Google Scholar

Finning K, Martin P, Daniels G. A clinical service in the UK to prevent fetal Rh (rhesus) D blood group using free fetal DNA in maternal plasma. Ann N Y Acad Sci 2004;1022:119–23.10.1196/annals.1318.01915251949Search in Google Scholar

Scheffer PG, van der Schoot CE, Page-Christiaens GC, et al. Noninvasive fetal blood group genotyping of rhesus D, c, E and of K in alloimmunised pregnant women: evaluation of a 7-year experience. BJOG 2011;118:1340–8.10.1111/j.1471-0528.2011.03028.x21668766Search in Google Scholar

Westhoff CM. The potential of blood group genotyping for transfusion medicine practice. Immunohematology 2008;24: 190–5.10.21307/immunohematology-2019-297Search in Google Scholar

Flickinger C. REGGI and The American Rare Donor Program. Transfus Med Hemother 2014;41:342–5.10.1159/000366149426449325538535Search in Google Scholar

Revelli N, Villa MA, Paccapelo C, et al. The Lombardy Rare Donor Programme. Blood Transfus 2014;12(Suppl 1): S249–55.Search in Google Scholar

Latini FR, Gazito D, Arnoni CP, et al. A new strategy to identify rare blood donors: single polymerase chain reaction multiplex SnaPshot reaction for detection of 16 rare blood group alleles. Blood Transfus 2014;12(Suppl 1):S256–63.Search in Google Scholar

Jiao W, Liao X, Li H, et al. Rare blood donors screening by multiplex PCR methods in Chinese Zhuang and Dong population and pedigree analysis. Int J Clin Exp Med 2015; 8:3777–84.Search in Google Scholar

U.S. Census Bureau. Census Brief: The Two or More Races Population: 2010. http://www.census.gov/prod/cen2010/ briefs/c2010br–13.pdf.Search in Google Scholar

Daniels G, van der Schoot CE, Olsson ML. Report of the Fourth International Workshop on molecular blood group genotyping. Vox Sang 2011;101:327–32.10.1111/j.1423-0410.2011.01540.x21895679Search in Google Scholar

Denomme GA, Westhoff CM, Castilho LM, et al. Consortium for Blood Group Genes (CBGG): 2009 report. Immunohematology 2010;26:47–50.10.21307/immunohematology-2019-201Search in Google Scholar

Flegel WA, Chiosea I, Sachs UJ, et al. External quality assessment in molecular immunohematology: the INSTAND proficiency test program. Transfusion 2013;53(11 Suppl 2): 2850–8.10.1111/trf.12414383065024111785Search in Google Scholar

Delaney M. Proficiency testing for blood group genotyping. Transfusion 2013;53(11 Suppl 2):2847–9.10.1111/trf.1240824033144Search in Google Scholar

Boyle J, Thorpe SJ, Hawkins JR, et al. International reference reagents to standardise blood group genotyping: evaluation of candidate preparations in an international collaborative study. Vox Sang 2013;104:144–52.10.1111/j.1423-0410.2012.01641.x22882606Search in Google Scholar

College of American Pathologists. Surveys and Excel programs. http://www.cap.org/web/home/lab/proficiency–testing/ surveys–and–excelprograms?_afrLoop=250663778210629# %40%3F_afrLoop%3D250663778210629%26_adf.ctrl–state %3Dohs13gzly_25.Search in Google Scholar

AABB. AABB accredited molecular testing laboratories. http:// www.aabb.org/sa/facilities/Pages/MolTestAccrFac.aspx.Search in Google Scholar

Hopp K, Weber K, Bellissimo D, et al. High-throughput red blood cell antigen genotyping using a nanofluidic real-time polymerase chain reaction platform. Transfusion 2010;50: 40–6.10.1111/j.1537-2995.2009.02377.x19761548Search in Google Scholar

Denomme GA, Schanen MJ. Mass-scale donor red cell genotyping using real-time array technology. Immunohematology 2015;31:69–74.10.21307/immunohematology-2019-073Search in Google Scholar

McBean RS, Hyland CA, Flower RL. Blood group genotyping: the power and limitations of the Hemo ID Panel and MassARRAY platform. Immunohematology 2015;31:75–80.10.21307/immunohematology-2019-074Search in Google Scholar

Latini FRM, Castilho LM. An overview of the use of SNaPshot for genotyping blood group antigens. Immunohematology 2015;31:53–57.10.21307/immunohematology-2019-070Search in Google Scholar

Goldman M, Nogués N, Castilho LM. An overview of the Progenika ID CORE XT: an automated genotyping platform based on a fluidic microarray system. Immunohematology 2015;31:62–68.10.21307/immunohematology-2019-072Search in Google Scholar

Veldhuisen B, van der Schoot CE, de Haas M. Multiplex ligation-dependent probe amplification (MLPA) assay for blood group genotyping, copy number quantification, and analysis of RH variants. Immunohematology 2015;31:58–61.10.21307/immunohematology-2019-071Search in Google Scholar

Paccapelo C, Truglio F, Villa MA, et al. HEA BeadChip™ technology in immunohematology. Immunohematology 2015; 31:81–90.10.21307/immunohematology-2019-075Search in Google Scholar

eISSN:
1930-3955
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, Laboratory Medicine