Accès libre

Nanosensors Engineering: Ii. Superficial Functionalization Of Sno2 Nanowire For Sensing Performance Improvement

À propos de cet article

Citez

M. Law, H. Kind, B. Messer, F. Kim, and P.D. Yang, Photochemical Sensing of NO2 with Sno2 Nanoribbon Nanosensors at Room Temperature, Angewandte Chemie-International Edition, 41, Issue 13, 2405–2408 (2002) Search in Google Scholar

E. Comini, G. Faglia, G. Sberveglieri, Z.W. Pan, and Z.L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Applied Physics Letters, 81, Issue 10, 1869-1871 (2002) Search in Google Scholar

C. Li, D.H. Zhang, X.L. Liu, S. Han, T. Tang, J. Han, and C.W. Zhou, In2O3 nanowires as chemical sensors, Applied Physics Letters, 82, Issue 10, 1613 (2003)10.1063/1.1559438 Search in Google Scholar

A. Kolmakov, Y.X. Zhang, G.S. Cheng, and M. Moskovits, Detection of CO and O2 Using Tin Oxide Nanowire Sensors, Advanced Materials, 15, 997 (2003)10.1002/adma.200304889 Search in Google Scholar

A Maiti, J Rodriguez, M Law, P Kung, J McKinney, P Yang, Sno2 Nanoribons as NO2 Sensors, Nano Letters, 3, 1025-1028 (2003)10.1021/nl034235v Search in Google Scholar

D. J. Zhang, C. Li, X. L. Liu, et al., Doping dependent NH3 sensing of indium oxide nanowires, Applied Physics Letters, 83, 1845 (2003)10.1063/1.1604194 Search in Google Scholar

Y. Zhang, A. Kolmakov, S. Chretien, et al., Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it, Nano Letters, 4, 403 (2004)10.1021/nl034968f Search in Google Scholar

A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, Enhanced Gas Sensing by Individual Sno2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles, Nano Letters, 5, 667 (2005)10.1021/nl050082v Search in Google Scholar

M. Curreli, C. Li, Y. Sun, B. Lei, M.A. Gundersen, M.E. Thompson, C. Zhou, Selective Functionalization of In2O3 Nanowire Mat Devices for Bio-sensing Applications, Journal of the American Chemical Society, 127, 6922–6923 (2005) Search in Google Scholar

A. Alejandre, F. Medina, P. Salagre, A. Fabregat, J.E. Sueiras, Characterization and activity of copper and nickel catalysts for the oxidation of phenol aqueous solutions, Applied Catalysis B-Environmental, 18, 307-315 (1998) Search in Google Scholar

K. M. Dooley, S. Y. Chen, J. R. H. Ross, Stable Nickel-Containing Catalysts for the Oxidative Coupling of Methane, J. Catal., 145, 402-408 (1994). Search in Google Scholar

R. X. Dingsheng Wang, Xun Wang and Yadong Li, NiO nanorings and their unexpected catalytic property for CO oxidation Nanotechnology, 17, 979–983 (2006)10.1088/0957-4484/17/4/023 Search in Google Scholar

R. H. Kodama, S. A. Makhlouf, A. E. Berkowitz, Finite Size Effects in Antiferromagnetic NiO Nanoparticles, Physical Review Letters, 79, 1393 (1997)10.1103/PhysRevLett.79.1393 Search in Google Scholar

T. M. H. Sato, S. Takata and T. Yamada, Transparent Conducting P-Type NiOx Thin Films Prepared by Magnetron Sputtering, Thin Solid Films, 236, 27-31 (1993) Search in Google Scholar

K. Yoshimura, T. Miki, and S. Tanemura, Nickel Oxide Electrochromic Thin Films Prepared by Reactive DC Magnetron Sputtering, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 34, 2440 (1995)10.1143/JJAP.34.2440 Search in Google Scholar

T. P. A.Neubecker, T. Doll, W. Hansch and I. Eisele, Ozone-enhanced molecular beam deposition of nickel oxide (NiO) for sensor applications, Thin Solid Films 310, 19-23 (1997) Search in Google Scholar

J. H. I. Hotový, L. Spiess, R. Capkovic and S. Hascík, Preparation and characterization of NiO thin films for gas sensor applications,.Vacuum, 58, 300 (2000)10.1016/S0042-207X(00)00182-2 Search in Google Scholar

M. Matsumiya, F. Qiu, W. Shin, N. Izu, N. Murayama, S. Kanzaki, Thin-film Li-doped NiO for thermoelectric hydrogen gas sensor, Thin Solid Films, 419, 213 (2002)10.1016/S0040-6090(02)00762-9 Search in Google Scholar

V. R. I. Hotovy, P. Siciliano, S. Capone, L. Spiess, Sensing characteristics of NiO thin films as NO2 gas sensor, Thin Solid Films, 418, 9 (2002)10.1016/S0040-6090(02)00579-5 Search in Google Scholar

R. C. P. Hidalgo, A.Coelho, and D. Gouvêa, Surface segregation and consequent SO2 sensor response in Sno2-NiO, Chemistry of Materials, 17, 4149 (2005)10.1021/cm049020g Search in Google Scholar

D.F.Cox, T.B. Fryberger, S. Semancik. Oxygen vacancies and defect electronic states on the Sno2 (110)-1x1 surface, Physical Review B, 38, 2072-2083 (1988) Search in Google Scholar

C.G.Founstadt, R.H.Rediker, Electrical Properties of High-Quality Stannic Oxide Crystals, J.Appl. Phys, 42, 2911-2918 (1971) Search in Google Scholar

Z.R. Dai, Z.W. Pan, and Z.L. Wang, Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation”, Advanced Functional Materials, 13, 9, (2003)10.1002/adfm.200390013 Search in Google Scholar

McCarthy and J.Welton, Powder Diffraction, 4, 156 (1989)10.1017/S0885715600016638 Search in Google Scholar

M. N. Rumyantseva, O. V. Safonova, M. N. Boulova, L. I. Ryabova, A. M. Gas’kov, Russian Chemical Bulletin, International Edition, Vol. 52, No. 6, pp. 1217—1238 (2003) Search in Google Scholar

B. Monnerat, L. Kiwi-Minsker, A. Renken, Mathematical modelling of the unsteady-state oxidation of nickel gauze catalysts, Chemical Engineering Science, 58, 4911–4919 (2003) Search in Google Scholar

S. V.Kumari, M. Natarajan, V. K. Vaidyan, P. Koshy Surface oxidation of nickel thin films, Journal of Materials Science Letters, 11, Iss.11, 761-762 (1992) Search in Google Scholar

A.M. Mebel, D.-Y. Hwang, Theoretical Study on the Reaction Mechanism of Nickel Atoms with Carbon Dioxide, J. Phys. Chem. A, 104 (49), pp 11622–11627, (2000)10.1021/jp002402z Search in Google Scholar

J.A. Rodrigez, J.C.Hanson, A. I. Frenkel J.Y.Kim, M.Perez, Experimental and Theoretical Studies on the Reaction of H2 with NiO: Role of O Vacancies and Mechanism of Oxide Reduction, J.Am. Chem. Soc., 124, No.2, 346-354 (2002) Search in Google Scholar

P.K. de Bokx, F. Labohm, O.L.J. Gijzeman, G.A. Bootsma, J.W. Geus, The Interaction of Oxygen with Ni(100) and the Reduction of the Surface Oxide by Hydrogen, Appl. Surf. Sci., 5, 321—331, (1980)10.1016/0378-5963(80)90070-7 Search in Google Scholar

eISSN:
1178-5608
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Engineering, Introductions and Overviews, other