À propos de cet article

Citez

J. Bico, U. Thiele and D. Quéré, “Wetting of textured surfaces,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 206, pp. 41-46, 2002.10.1016/S0927-7757(02)00061-4 Search in Google Scholar

R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem, vol. 28, pp. 7426-7431, 1936. Search in Google Scholar

A. Nakajima, “Design of a transparent hydrophobic coating,” Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan, vol. 112, pp. 533-540, 2004.10.2109/jcersj.112.533 Search in Google Scholar

A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi and A. Fujishima, “Transparent superhydrophobic thin films with self-cleaning properties,” Langmuir, vol. 16, pp. 7044-7047, 2000. Search in Google Scholar

N. A. Patankar, “Mimicking the lotus effect: Influence of double roughness structures and slender pillars,” Langmuir, vol. 20, pp. 8209-8213, 2004. Search in Google Scholar

J. Bravo, L. Zhai, Z. Wu, R. E. Cohen and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir, vol. 23, pp. 7293-7298, 2007. Search in Google Scholar

F. C. Cebeci, Z. Wu, L. Zhai, R. E. Cohen and M. F. Rubner, “Nanoporosity-driven superhydrophilicity: A means to create multifunctional antifogging coatings,” Langmuir, vol. 22, pp. 2856-2862, 2006. Search in Google Scholar

R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, “Light-induced amphiphilic surfaces [4],” Nature, vol. 388, pp. 431-432, 1997.10.1038/41233 Search in Google Scholar

K. Guan, B. Lu and Y. Yin, “Enhanced effect and mechanism of SiO2 addition in super-hydrophilic property of TiO2 films,” Surface and Coatings Technology, vol. 173, pp. 219-223, 2003.10.1016/S0257-8972(03)00521-8 Search in Google Scholar

R. -. Sun, A. Nakajima, A. Fujishima, T. Watanabe and K. Hashimoto, “Photoinduced surface wettability conversion of ZnO and TiO2 Thin Films,” Journal of Physical Chemistry B, vol. 105, pp. 1984-1990, 2001. Search in Google Scholar

T. Soeno, K. Inokuchi and S. Shiratori, “Ultra-water-repellent surface: Fabrication of complicated structure of SiO2 nanoparticles by electrostatic self-assembled films,” Applied Surface Science, vol. 237, pp. 543-547, 2004.10.1016/S0169-4332(04)00986-9 Search in Google Scholar

Y. Lvov, K. Ariga, M. Onda, I. Ichinose and T. Kunitake, “Alternate assembly of ordered multilayers of SiO2 and other nanoparticles and polyions,” Langmuir, vol. 13, pp. 6195-6202, 1997. Search in Google Scholar

R. K. Iler, “Multilayers of colloidal particles,” J. Colloid Interface Sci., vol. 21, pp. 569594, 1966. Search in Google Scholar

G. Decher, “Fuzzy nanoassemblies: Toward layered polymeric multicomposites,” Science, vol. 277, pp. 1232-1237, 1997. Search in Google Scholar

G. V. Franks, “Zeta potentials and yield stresses of silica suspensions in concentrated monovalent electrolytes: Isoelectric point shift and additional attraction,” Journal of Colloid and Interface Science, vol. 249, pp. 44-51, 2002.10.1006/jcis.2002.825016290567 Search in Google Scholar

J. Choi and M. F. Rubner, “Selective adsorption of amphiphilic block copolymers on weak polyelectrolyte multilayers,” Journal of Macromolecular Science - Pure and Applied Chemistry, vol. 38 A, pp. 1191-1206, 2001. Search in Google Scholar

S. S. Shiratori and M. F. Rubner, “pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes,” Macromolecules, vol. 33, pp. 4213-4219, 2000. Search in Google Scholar

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir, vol. 16, pp. 5754-5760, 2000. Search in Google Scholar

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Transactions of the Faraday Society, vol. 40, pp. 546-551, 1944.10.1039/tf9444000546 Search in Google Scholar

F. J. Arregui, I. R. Matias, Y. Liu, K. M. Lenahan and R. O. Claus, “Optical fiber nanometer-scale Fabry-Perot interferometer formed by the ionic self-assembly monolayer process,” Optics Letters, vol. 24, pp. 596-598, 1999.10.1364/OL.24.00059618073794 Search in Google Scholar

J. M. Corres, I. R. Matías, J. M. Hernáez, J. Bravo and F. J. Arregui, “Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles,” IEEE Sensors J, vol. 8, pp. 281-285, 2008.10.1109/JSEN.2008.917487 Search in Google Scholar

I. D. Villar, I. R. Matías, F. J. Arregui and R. O. Claus, “Fiber-optic hydrogen peroxide nanosensor,” IEEE Sensors Journal, vol. 5, pp. 365-370, 2005.10.1109/JSEN.2005.846182 Search in Google Scholar

J. M. Corres, F. J. Arregui and I. R. Matías, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sensors and Actuators, B: Chemical, vol. 122, pp. 442-449, 2007.10.1016/j.snb.2006.06.008 Search in Google Scholar

F. J. Arregui, “Optical fiber humidity sensor with a fast response time using the ionic selfassembly method,” IEICE Transactions on Electronics, vol. E83-C, pp. 360-364, 2000. Search in Google Scholar

Javier Goicoechea, Francisco J. Arregui, Jesus M. Corres, and Ignacio R. Matias, “Study and Optimization of Self-Assembled Polymeric Multilayer Structures with Neutral Red for pH Sensing Applications,” Journal of Sensors, vol. 2008, Article ID 142854, 7 pages, 2008. Search in Google Scholar

F. J. Arregui, I. R. Matias, J. Goicoechea, I. Del Villar, “Optical Fiber Sensors Based on Nanostructured Coatings” in Sensors Based on Nanostructured Materials, F. J. Arregui, Ed. New York: Springer, 2009, pp. 275-302.10.1007/978-0-387-77753-5_9 Search in Google Scholar

eISSN:
1178-5608
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Engineering, Introductions and Overviews, other