Accès libre

Deep Learning in Product Manufacturing Record System

 et   
22 févr. 2022
À propos de cet article

Citez
Télécharger la couverture

Deep learning based data analysis techniques are investigated in the context of product production record systems, using CNN, STACK LSTM, GRU, INCEPTION, ConvLSTM and CasualLSTM techniques to design network models and to study the processing of temporal data. Three network models are proposed for the problem of predicting the pass rate of upcoming product inspection records, namely CNN-STACK LSTM, INCEPTION-GRU and INCEPTION-Casual LSTM, and the structure of each network model follows the learning of local-global features. The experimental results show that the INCEPTION-GRU network model works best among the three models. Based on the prediction results, it is possible to correct in advance the operation of the shop technicians who do not regulate the debugging of the product, so that the initial production efficiency of the product can be improved.

Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Informatique, Informatique, autres