Accès libre

Modeling of Environmental-Energy Efficiency of the Biogas Installation with Heat Supplying of the Biomass Fermentation Process

À propos de cet article

Citez

Geletuha, G. G., Zheleznaya, T. A., Kucheruk, P. P., & Olejnik, E. N. (2014). Sovremennoe sostoyanie i perspektivy razvitiya bioenergetiki v Ukraine (Modern state of the art and prospects of bioenergy development). Analiticheskaya zapiska BAU 9, (Analytical note of Bioenergy Association of Ukraine 9), 25. Geletuha G. G. Zheleznaya T. A. Kucheruk P. P. Olejnik E. N. 2014 Sovremennoe sostoyanie i perspektivy razvitiya bioenergetiki v Ukraine (Modern state of the art and prospects of bioenergy development) Analiticheskaya zapiska BAU 9 (Analytical note of Bioenergy Association of Ukraine 9), 25 Search in Google Scholar

Kudria, S. O. (2015). Sostoyanie i perspektivy razvitiya vozobnovlyaemoj energetiki v Ukraine (State and prospects for development of renewable energy in Ukraine). Visnyk Natsionalnoi akademii nauk Ukrainy (Bulletin of the National Academy of Sciences of Ukraine), 12, 19–26. Kudria S. O. 2015 Sostoyanie i perspektivy razvitiya vozobnovlyaemoj energetiki v Ukraine (State and prospects for development of renewable energy in Ukraine) Visnyk Natsionalnoi akademii nauk Ukrainy (Bulletin of the National Academy of Sciences of Ukraine) 12 19 26 Search in Google Scholar

Ratushniak, H. S., Lialiuk, O. H., & Koshcheiev, I. A. (2017). Biohazovi ustanovky z vidnovliuvanymy dzherelamy enerhii termo-stabilizatsii protsesu fermentatsii biomasy (Biogas installations with renewable energy sources of thermo-stabilization biomass fermentation) Vinnytsia: VNTU, 110. Ratushniak H. S. Lialiuk O. H. Koshcheiev I. A. 2017 Biohazovi ustanovky z vidnovliuvanymy dzherelamy enerhii termo-stabilizatsii protsesu fermentatsii biomasy (Biogas installations with renewable energy sources of thermo-stabilization biomass fermentation) Vinnytsia VNTU 110 Search in Google Scholar

Baader, W. (1978). Technische Voraussetzungen und Konsequenzen fur Biogasgewinnung im land-wirtschaftlichen Bereich. Landtechnik. Baader W. 1978 Technische Voraussetzungen und Konsequenzen fur Biogasgewinnung im land-wirtschaftlichen Bereich Landtechnik Search in Google Scholar

Dubrovin, V. O., Melnichuk, M. D., & Melnik, Y. F. (2009). Bioenergiya v Ukrayini – rozvitok silskih teritorij ta mozhlivosti dlya okremih gromad. (Bioenergy in Ukraine-rural development and opportunities for individual communities) K: NUBiP Ukrainy. (Kyiv: The National University of Life and Environmental Sciences of Ukraine), 111. Dubrovin V. O. Melnichuk M. D. Melnik Y. F. 2009 Bioenergiya v Ukrayini – rozvitok silskih teritorij ta mozhlivosti dlya okremih gromad (Bioenergy in Ukraine-rural development and opportunities for individual communities) K: NUBiP Ukrainy. Kyiv The National University of Life and Environmental Sciences of Ukraine 111 Search in Google Scholar

Serbin, V. A. (2003). Netradicijni ta ponovlyuvani dzherela energiyi v sistemah TGP. (Non-conventional and renewable systems in HVAC) Makiyivka: Donbas National Academy of Civil Engineering and Architecture, 153. Serbin V. A. 2003 Netradicijni ta ponovlyuvani dzherela energiyi v sistemah TGP (Non-conventional and renewable systems in HVAC) Makiyivka Donbas National Academy of Civil Engineering and Architecture 153 Search in Google Scholar

Drukovanyi, M. F. (2010). Suchasni tekhnolohii pererobky biomasy v biohaz ta orhanichni dobryva (Modern technologies of biomass processing into biogas and organic fertilizers). Zb. nauk. prats Vinnytskoho nats. ahrar. un-tu (Coll. of Science Works of Vinnytsia National Agrarian University), 42, 125–140. Drukovanyi M. F. 2010 Suchasni tekhnolohii pererobky biomasy v biohaz ta orhanichni dobryva (Modern technologies of biomass processing into biogas and organic fertilizers). Zb. nauk. prats Vinnytskoho nats. ahrar. un-tu Coll. of Science Works of Vinnytsia National Agrarian University 42 125 140 Search in Google Scholar

Joshua, O. S., Ejura, G. J., Bako, I. C., Gbaja, I. S., & Yusuf, Y. I. (2014). Fundamental principles of biogas product. Int J Sci Eng Res (IJSER), 2(8), 47–50. Joshua O. S. Ejura G. J. Bako I. C. Gbaja I. S. Yusuf Y. I. 2014 Fundamental principles of biogas product Int J Sci Eng Res (IJSER) 2 8 47 50 Search in Google Scholar

Golub, N., Kozlovets, O., & Voyevoda, D. (2016). Technology of anaerobic-aerobic purification of wastewater from nitrogen compounds after obtaining biogas. Eastern-European Journal of Enterprise Technologies, 3(10), 35–40. Golub N. Kozlovets O. Voyevoda D. 2016 Technology of anaerobic-aerobic purification of wastewater from nitrogen compounds after obtaining biogas Eastern-European Journal of Enterprise Technologies 3 10 35 40 10.15587/1729-4061.2016.72336 Search in Google Scholar

Geletuha, G. G., & Kobzar’, S. G. (2002). Sovremennye tekhnologii anaerobnogo sbrazhivaniya biomassy (Obzor) (Modern technologies of anaerobic digestion of biomass (Review)). Ekotekhnologii i resursosberezhenie (Ecotechnologies and resource conservation), 4, 3–10. Geletuha G. G. Kobzar’ S. G. 2002 Sovremennye tekhnologii anaerobnogo sbrazhivaniya biomassy (Obzor) (Modern technologies of anaerobic digestion of biomass (Review)) Ekotekhnologii i resursosberezhenie (Ecotechnologies and resource conservation) 4 3 10 Search in Google Scholar

Zhelykh, V. M., & Furdas, Yu. V. (2013). Pidtrymannia teplovoho rezhymu bioreaktora pid chas zastosuvannia soniachnoi enerhii (The bioreactor thermal regime maintaining when using solar energy). Suchasni tekhnolohii, materialy i konstruktsii v budivnytstvi (Modern Technology, Materials and Design in Construction), 1, 142–148. Zhelykh V. M. Furdas Yu. V. 2013 Pidtrymannia teplovoho rezhymu bioreaktora pid chas zastosuvannia soniachnoi enerhii (The bioreactor thermal regime maintaining when using solar energy) Suchasni tekhnolohii, materialy i konstruktsii v budivnytstvi (Modern Technology, Materials and Design in Construction) 1 142 148 Search in Google Scholar

Borovska, T. M., & Severilov, P. V. (2009). Modeliuvannia y optymizatsiia system vyrobnytstva biohazu (Modeling and optimization of biogas production systems). Naukovi pratsi VNTU (Scientific works of VNTU), 2, 1–9. Borovska T. M. Severilov P. V. 2009 Modeliuvannia y optymizatsiia system vyrobnytstva biohazu (Modeling and optimization of biogas production systems) Naukovi pratsi VNTU (Scientific works of VNTU) 2 1 9 Search in Google Scholar

Ratushnyak, G. S. (2012). Intensification of Biogas Production By Means of Mechanical Mixing of The Substrate. Tap Chi Khoa hoc & Cong nghe, 8, 57. Ratushnyak G. S. 2012 Intensification of Biogas Production By Means of Mechanical Mixing of The Substrate Tap Chi Khoa hoc & Cong nghe 8 57 Search in Google Scholar

Redko, A. O., Bezrodnyi, M. K., Zahoruchenko, M. V., Redko, O. F., Ratushniak, H. S., & Khmelniuk, M. H. (2016). Nyzkopotentsiina enerhetyka (Low-potential energy). Kharkiv: TOV “Drukarnia Madryd”, 412. Redko A. O. Bezrodnyi M. K. Zahoruchenko M. V. Redko O. F. Ratushniak H. S. Khmelniuk M. H. 2016 Nyzkopotentsiina enerhetyka (Low-potential energy) Kharkiv TOV “Drukarnia Madryd” 412 Search in Google Scholar

Tkachenko, S. Y., Stepanov, D. V., & Stepanova, N. D. (2020). Analiz sotsialnoi ta enerho-i pryrodozberezhnoi efektyvnosti realizatsii biohazovoi tekhnolohii (Analysis of social and energy-environmental efficiency of biogas technology’s realization). Visnyk Vinnytskoho politekhnichnoho instytutu (Herald of Vinnytsia politechnical institute), 2, 34–41. Tkachenko S. Y. Stepanov D. V. Stepanova N. D. 2020 Analiz sotsialnoi ta enerho-i pryrodozberezhnoi efektyvnosti realizatsii biohazovoi tekhnolohii (Analysis of social and energy-environmental efficiency of biogas technology’s realization) Visnyk Vinnytskoho politekhnichnoho instytutu (Herald of Vinnytsia politechnical institute) 2 34 41 10.31649/1997-9266-2020-149-2-34-41 Search in Google Scholar

Ziemiński, K., & Frąc, M. (2012). Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms. African Journal of Biotechnology, 11(18), 4127–4139. Ziemiński K. Frąc M. 2012 Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms African Journal of Biotechnology 11 18 4127 4139 Search in Google Scholar

Zemlianka, O. O., & Hubynskyi, M. V. (2009). Vybir ratsionalnykh rezhymiv roboty reaktora biohazovoi ustanovky. (The choice of rational modes of operation of the biogas installation reactor). Tekhnichna teplofizyka ta promyslova teploenerhetyka (Technical thermophysics and industrial thermal power engineering), 1, 112–120. Zemlianka O. O. Hubynskyi M. V. 2009 Vybir ratsionalnykh rezhymiv roboty reaktora biohazovoi ustanovky. (The choice of rational modes of operation of the biogas installation reactor) Tekhnichna teplofizyka ta promyslova teploenerhetyka (Technical thermophysics and industrial thermal power engineering) 1 112 120 Search in Google Scholar

Weiland, P. (2003). Production and energetic use of biogas from energy crops and wastes in Germany. Applied biochemistry and biotechnology, 109(1-3), 263–274. Weiland P. 2003 Production and energetic use of biogas from energy crops and wastes in Germany Applied biochemistry and biotechnology 109 1-3 263 274 10.1385/ABAB:109:1-3:263 Search in Google Scholar

Zuiev, O. O. (2009). Ekonomichni aspekty vprovadzhennia suchasnykh biohazovykh ustanovok (Economic aspects of modern biogas installations implementation). Proceedings of the Tavria State agrotechnological university, 5(9), 88–92. Retrieved from: http/www.nbuv.gov.ua/portal/chem.biol/ptdan/2009_9_5/5113.pdf. Zuiev O. O. 2009 Ekonomichni aspekty vprovadzhennia suchasnykh biohazovykh ustanovok (Economic aspects of modern biogas installations implementation) Proceedings of the Tavria State agrotechnological university 5 9 88 92 Retrieved from: http/www.nbuv.gov.ua/portal/chem.biol/ptdan/2009_9_5/5113.pdf. Search in Google Scholar

Rotshtein, O. P., Lariushkin, P., & Mitiushkin, Yu. I. (2008). Soft computing v biotekhnolohii: bahatofaktornyi analiz i diahnostyka (Soft computing in biotechnology: multivariate analysis and diagnostics). Vinnytsia: UNIVERSUM-Vinnytsia, 144. Rotshtein O. P. Lariushkin P. Mitiushkin Yu. I. 2008 Soft computing v biotekhnolohii: bahatofaktornyi analiz i diahnostyka (Soft computing in biotechnology: multivariate analysis and diagnostics) Vinnytsia UNIVERSUM-Vinnytsia 144 Search in Google Scholar

Baral, S., Pudasaini, S., Khanal, S., & Gurung, D. (2013). Mathematical modelling, finite element simulation and experimental validation of biogas-digester slurry temperature. International Journal of Energy and Power Engineering, 2(3), 128–135. Baral S. Pudasaini S. Khanal S. Gurung D. 2013 Mathematical modelling, finite element simulation and experimental validation of biogas-digester slurry temperature International Journal of Energy and Power Engineering 2 3 128 135 10.11648/j.ijepe.20130203.17 Search in Google Scholar

Megonigal, J. P., Hines, M. E., & Visscher, P. T. (2004). Anaerobic metabolism: linkages to trace gases and aerobic processes. In Biogeochemistry, 317–392. Megonigal J. P. Hines M. E. Visscher P. T. 2004 Anaerobic metabolism: linkages to trace gases and aerobic processes. In Biogeochemistry 317 392 Search in Google Scholar

Pham, C. H., Vu, C. C., Sommer, S. G., & Bruun, S. (2014). Factors affecting process temperature and biogas production in small-scale rural biogas digesters in winter in northern Vietnam. Asian-Australasian journal of animal sciences, 27(7), 1050–1056. Pham C. H. Vu C. C. Sommer S. G. Bruun S. 2014 Factors affecting process temperature and biogas production in small-scale rural biogas digesters in winter in northern Vietnam Asian-Australasian journal of animal sciences 27 7 1050 1056 10.5713/ajas.2013.13534 Search in Google Scholar

Tkachenko, S. Y., & Rezydent, N. V. (2011). Teploobmin v systemakh biokonversii (Heat transfer in bioconversion systems). Vinnytsia: VNTU. Tkachenko S. Y. Rezydent N. V. 2011 Teploobmin v systemakh biokonversii (Heat transfer in bioconversion systems) Vinnytsia VNTU Search in Google Scholar

Turkdogan-Aydınol, F. I., & Yetilmezsoy, K. (2010). A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater. Journal of hazardous materials, 182(1–3), 460–471. Turkdogan-Aydınol F. I. Yetilmezsoy K. 2010 A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater Journal of hazardous materials 182 1–3 460 471 10.1016/j.jhazmat.2010.06.054 Search in Google Scholar

Suganthi, L., Iniyan, S., & Samuel, A. A. (2015). Applications of fuzzy logic in renewable energy systems – a review. Renewable and sustainable energy reviews, 48, 585–607. Suganthi L. Iniyan S. Samuel A. A. 2015 Applications of fuzzy logic in renewable energy systems – a review Renewable and sustainable energy reviews 48 585 607 10.1016/j.rser.2015.04.037 Search in Google Scholar

Finzi, A., Oberti, R., Riva, E., & Provolo, G. (2014). A Simple Fuzzy Logic Management SupportSystem for Farm Biogas Plants. Applied Engineering in Agriculture, 30(3), 509–518. Finzi A. Oberti R. Riva E. Provolo G. 2014 A Simple Fuzzy Logic Management SupportSystem for Farm Biogas Plants Applied Engineering in Agriculture 30 3 509 518 Search in Google Scholar

Blesgen, A., & Hass, V. C. (2010). Efficient biogas production through process simulation. Energy & fuels, 24(9), 4721–4727. Blesgen A. Hass V. C. 2010 Efficient biogas production through process simulation Energy & fuels 24 9 4721 4727 10.1021/ef9012483 Search in Google Scholar

Chen, T., Shen, D., Jin, Y., Li, H., Yu, Z., Feng, H., … & Yin, J. (2017). Comprehensive evaluation of environ-economic benefits of anaerobic digestion technology in an integrated food waste-based methane plant using a fuzzy mathematical model. Applied Energy, 208, 666–677. Chen T. Shen D. Jin Y. Li H. Yu Z. Feng H. Yin J. 2017 Comprehensive evaluation of environ-economic benefits of anaerobic digestion technology in an integrated food waste-based methane plant using a fuzzy mathematical model Applied Energy 208 666 677 10.1016/j.apenergy.2017.09.082 Search in Google Scholar

Djatkov, D., Effenberger, M., & Martinov, M. (2014). Method for assessing and improving the efficiency of agricultural biogas plants based on fuzzy logic and expert systems. Applied energy, 134, 163–175. Djatkov D. Effenberger M. Martinov M. 2014 Method for assessing and improving the efficiency of agricultural biogas plants based on fuzzy logic and expert systems Applied energy 134 163 175 10.1016/j.apenergy.2014.08.021 Search in Google Scholar

Latinwo, G. K., & Agarry, S. E. (2015). Modelling the kinetics of biogas production from mesophilic anaerobic co-digestion of cow dung with plantain peels. International Journal of Renewable Energy Development, 4(1), 55. Latinwo G. K. Agarry S. E. 2015 Modelling the kinetics of biogas production from mesophilic anaerobic co-digestion of cow dung with plantain peels International Journal of Renewable Energy Development 4 1 55 10.14710/ijred.4.1.55-63 Search in Google Scholar

Yordanova, S. N. E. J. A. N. A. (2007). Single input fuzzy control for nonlinear and time-varying plant. In Proc. of the 11th WSEAS international conference on Systems, 189–193. Yordanova S. N. E. J. A. N. A. 2007 Single input fuzzy control for nonlinear and time-varying plant. In Proc. of the 11th WSEAS international conference on Systems 189 193 Search in Google Scholar

Wahmkow, C., Knape, M., & Konnerth, E. (2013, June). Biogas Intelligence-operate biogas plants using Neural Network and Fuzzy logic. In 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 1483–1488. IEEE. Wahmkow C. Knape M. Konnerth E. 2013 June Biogas Intelligence-operate biogas plants using Neural Network and Fuzzy logic In 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS) 1483 1488 IEEE 10.1109/IFSA-NAFIPS.2013.6608621 Search in Google Scholar

eISSN:
1899-0142
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Architecture and Design, Architecture, Architects, Buildings