1. bookVolume 56 (2017): Edition 3 (January 2017)
Détails du magazine
Première parution
01 Mar 1961
4 fois par an
Anglais, Polonais
Accès libre

Strategies for the analysis of thioloxidorductases

Publié en ligne: 22 May 2019
Volume & Edition: Volume 56 (2017) - Edition 3 (January 2017)
Pages: 326 - 334
Reçu: 01 Jan 2017
Accepté: 01 Mar 2017
Détails du magazine
Première parution
01 Mar 1961
4 fois par an
Anglais, Polonais

Agudo D., Mendoza M.T., Castanares C., Nombela C., Rotger R.: A proteomic approach to study Salmonella typhi periplasmic proteins altered by a lack of the DsbA thiol: disulfide isomerase. Proteomics, 4, 355–363 (2004)10.1002/pmic.20030055414760705Search in Google Scholar

Arts I.S., Ball G., Leverrier P., Garvis S., Nicolaes V., Vertommen D., Ize B., Tamu Dufe V., Messens J., Voulhoux R., Collet J.F.: Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa. mBio, 4, e00912–00913 (2013)10.1128/mBio.00912-13387025624327342Search in Google Scholar

Berkmen M.: Production of disulfide-bonded proteins in Escherichia coli. Protein Expr. Purif. 82, 240–251 (2012)10.1016/j.pep.2011.10.00922085722Search in Google Scholar

Bocian-Ostrzycka K.M., Grzeszczuk M.J., Banaś A.M., Jastrząb K., Pisarczyk K., Kolarzyk A., Łasica A.M., Collet J.-F., Jagusztyn-Krynicka E.K.: Engineering of Helicobacter pyloriDimeric Oxidoreductase DsbK (HP0231). Frontiers in Microbiology, 7, 1158 (2016)10.3389/fmicb.2016.01158496024127507968Search in Google Scholar

Chim N., Harmston C.A., Guzman D.J., Goulding C.W.: Structural and biochemical characterization of the essential DsbA- -like disulfide bond forming protein from Mycobacterium tuberculosis. BMC Struct. Biol. 13, 23 (2013)10.1186/1472-6807-13-23385370424134223Search in Google Scholar

Cho S.H., Collet J.F.: Many roles of the bacterial envelope reducing pathways. Antioxid. Redox Signal. 18, 1690–1698 (2013)10.1089/ars.2012.4962361317023025488Search in Google Scholar

Cho S.H., Parsonage D., Thurston C., Dutton R.J., Poole L.B., Collet J.F., Beckwith J.: A new family of membrane electron transporters and its substrates, including a new cell envelope peroxiredoxin, reveal a broadened reductive capacity of the oxidative bacterial cell envelope. mBio, 3, e00291–11. (2012)10.1128/mBio.00291-11332255222493033Search in Google Scholar

Cho S.H., Szewczyk J., Pesavento C., Zietek M., Banzhaf M., Roszczenko P., Asmar A., Laloux G., Hov A.K., Leverrier P., Van der Henst C., Vertommen D., Typas A., Collet J.F.: Detecting envelope stress by monitoring beta-barrel assembly. Cell,159, 1652–1664 (2014)10.1016/j.cell.2014.11.04525525882Search in Google Scholar

Daniels R., Mellroth P., Bernsel A., Neiers F., Normark S., von Heijne G., Henriques-Normark B.: Disulfide bond formation and cysteine exclusion in gram-positive bacteria. J. Biol. Chem.285, 3300–3309 (2010)10.1074/jbc.M109.081398282343219940132Search in Google Scholar

Denoncin K., Collet J.F.: Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead. Antioxid. Redox Signal. 19, 63–71 (2013)10.1089/ars.2012.4864367665722901060Search in Google Scholar

Denoncin K., Vertommen D., Paek E., Collet J.F.: The protein-disulfide isomerase DsbC cooperates with SurA and DsbA in the assembly of the essential beta-barrel protein LptD. J. Biol. Chem.285, 29425–29433 (2010)10.1074/jbc.M110.119321293797520615876Search in Google Scholar

Denoncin K., Nicolaes V., Cho S.H., Leverrier P., Collet J.F.: Protein disulfide bond formation in the periplasm: determination of the in vivo redox state of cysteine residues. Methods Mol. Biol. 966, 325–336 (2013)10.1007/978-1-62703-245-2_2023299744Search in Google Scholar

Depuydt M., Leonard S.E., Vertommen D., Denoncin K., Morsomme P., Wahni K., Messens J., Carroll K.S., Collet J.F.: A periplasmic reducing system protects single cysteine residues from oxidation. Science, 326, 1109–1111 (2009)10.1126/science.117955719965429Search in Google Scholar

Duprez W., Bachu P., Stoermer M.J., Tay S., McMahon R.M., Fairlie D.P., Martin J.L.: Virtual Screening of Peptide and Peptidomimetic Fragments Targeted to Inhibit Bacterial Dithiol Oxidase DsbA. PLoS ONE, 10, e0133805 (2015)10.1371/journal.pone.0133805452059326225423Search in Google Scholar

Duprez W., Premkumar L., Halili M.A., Lindahl F., Reid R.C., Fairlie D.P., Martin J.L.: Peptide Inhibitors of the Escherichia coli DsbA Oxidative Machinery Essential for Bacterial Virulence. J. Med. Chem. 58, 577–587 (2015)Search in Google Scholar

Dutton R.J., Boyd D., Berkmen M., Beckwith J.: Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. P. Natl. Acad. Sci. USA, 105, 11933– 11938 (2008)10.1073/pnas.0804621105257529018695247Search in Google Scholar

Grabowska A.D., Wywial E., Dunin-Horkawicz S., Lasica A.M., Wosten M.M., Nagy-Staron A., Godlewska R., Bocian-Ostrzycka K., Pienkowska K., Laniewski P., Bujnicki J.M., van Putten J.P., Jagusztyn-Krynicka E.K.: Functional and bioinformatics analysis of two Campylobacter jejuni homologs of the thiol-disulfide oxidoreductase, DsbA. PLoS ONE, 9, e106247 (2014)10.1371/journal.pone.0106247415223525181355Search in Google Scholar

Greiner-Stoeffele T., Grunow M., Hahn U.: A general ribonuclease assay using methylene blue. Anal. Biochem.240, 24–28 (1996)10.1006/abio.1996.03268811875Search in Google Scholar

Grimshaw J.P., Stirnimann C.U., Brozzo M.S., Malojcic G., Grutter M.G., Capitani G., Glockshuber R.: DsbL and DsbI form a specific dithiol oxidase system for periplasmic arylsulfate sulfotransferase in uropathogenic Escherichia coli. J. Mol. Biol. 380, 667–680 (2008)Search in Google Scholar

Hatahet F., Boyd D., Beckwith J.: Disulfide bond formation in prokaryotes: history, diversity and design. Biochim. Biophys. Acta, 1844, 1402–1414 (2014)Search in Google Scholar

Heras B., Edeling M.A., Schirra H.J., Raina S., Martin J.L.: Crystal structures of the DsbG disulfide isomerase reveal an unstable disulfide. P. Natl. Acad. Sci. USA, 101, 8876–8881 (2004)10.1073/pnas.040276910142844015184683Search in Google Scholar

Heras B., Shouldice S.R., Totsika M., Scanlon M.J., Schembri M.A., Martin J.L.: DSB proteins and bacterial pathogenicity. Nat. Rev. Microbiol. 7, 215–225 (2009)Search in Google Scholar

Heras B., Kurz M., Jarrott R., Shouldice S.R., Frei P., Robin G., Cemazar M., Thony-Meyer L., Glockshuber R., Martin J.L.: Staphylococcus aureus DsbA does not have a destabilizing disulfide. A new paradigm for bacterial oxidative folding. J. Biol. Chem.283, 4261–4271 (2008)10.1074/jbc.M70783820018077463Search in Google Scholar

Hiniker A., Bardwell J.C.: In vivo substrate specificity of periplasmic disulfide oxidoreductases. J. Biol. Chem.279, 12967–12973 (2004)10.1074/jbc.M31139120014726535Search in Google Scholar

Hiniker A., Collet J.F., Bardwell J.C.: Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J. Biol. Chem.280, 33785–33791 (2005)10.1074/jbc.M50574220016087673Search in Google Scholar

Hiniker A., Ren G., Heras B., Zheng Y., Laurinec S., Jobson R.W., Stuckey J.A., Martin J.L., Bardwell J.C.: Laboratory evolution of one disulfide isomerase to resemble another. P. Natl. Acad. Sci. USA, 104, 11670–11675 (2007)10.1073/pnas.0704692104190672217609373Search in Google Scholar

Inaba K., Ito K.: Structure and mechanisms of the DsbB-DsbA disulfide bond generation machine. Biochim. Biophys. Acta, 1783, 520–529 (2008)Search in Google Scholar

Inaba K., Murakami S., Suzuki M., Nakagawa A., Yamashita E., Okada K., Ito K.: Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. Cell, 127, 789–801 (2006)10.1016/j.cell.2006.10.03417110337Search in Google Scholar

Jameson-Lee M., Garduno R.A., Hoffman P.S.: DsbA2 (27 kDa Com1-like protein) of Legionella pneumophila catalyses extracytoplasmic disulphide-bond formation in proteins including the Dot/Icm type IV secretion system. Mol. Microbiol. 80, 835– 852 (2011)10.1111/j.1365-2958.2011.07615.x308613221375592Search in Google Scholar

Kadokura H., Katzen F., Beckwith J.: Protein disulfide bond formation in prokaryotes. Annu. Rev. Biochem. 72, 111–135 (2003)Search in Google Scholar

Kadokura H., Tian H., Zander T., Bardwell J.C., Beckwith J.: Snapshots of DsbA in action: detection of proteins in the process of oxidative folding. Science, 303, 534–537 (2004)10.1126/science.109172414739460Search in Google Scholar

Katzen F., Deshmukh M., Daldal F., Beckwith J.: Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD. EMBO J. 21, 3960–3969 (2002)10.1093/emboj/cdf40512615112145197Search in Google Scholar

Koniger V., Holsten L., Harrison U., Busch B., Loell E., Zhao Q., Bonsor D.A., Roth A., Kengmo-Tchoupa A., Smith S.I., Mueller S., Sundberg E.J., Zimmermann W., Fischer W., Hauck C.R., Haas R.: Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA. Nat. Microbiol. 2, 16188 (2016)10.1038/nmicrobiol.2016.23327798561Search in Google Scholar

Kpadeh Z.Z., Day S.R., Mills B.W., Hoffman P.S.: Legionella pneumophila utilizes a single-player disulfide-bond oxidore-ductase system to manage disulfide bond formation and isomerization. Mol. Microbiol. 95, 1054–1069 (2015)Search in Google Scholar

Kpadeh Z.Z., Jameson-Lee M., Yeh A.J., Chertihin O., Shumilin I.A., Dey R., Day S.R., Hoffman P.S.: Disulfide bond oxidoreductase DsbA2 of Legionella pneumophila exhibits protein disulfide isomerase activity. J. Bacteriol. 195, 1825–1833 (2013)10.1128/JB.01949-12362456223435972Search in Google Scholar

Kurz M., Iturbe-Ormaetxe I., Jarrott R., Cowieson N., Robin G., Jones A., King G.J., Frei P., Glockshuber R., O’Neill S.L., Heras B., Martin J.L.: Cloning, expression, purification and characterization of a DsbA-like protein from Wolbachia pipientis. Protein Expr. Purif. 59, 266–273 (2008)10.1016/j.pep.2008.02.00818387819Search in Google Scholar

Lafaye C., Iwema T., Carpentier P., Jullian-Binard C., Kroll J.S., Collet J.F., Serre L.: Biochemical and structural study of the homologues of the thiol-disulfide oxidoreductase DsbA in Neisseria meningitidis. J. Mol. Biol. 392, 952–966 (2009)Search in Google Scholar

Lasica A.M., Jagusztyn-Krynicka E.K.: The role of Dsb proteins of Gram-negative bacteria in the process of pathogenesis. FEMS Microbiol. Rev. 31, 626–636 (2007)Search in Google Scholar

Lasica A.M., Wyszynska A., Szymanek K., Majewski P., Jagusztyn-Krynicka E.K.: Campylobacter protein oxidation influences epithelial cell invasion or intracellular survival as well as intestinal tract colonization in chickens. J. Appl. Genet. 51, 383–393 (2010)Search in Google Scholar

Leverrier P., Declercq J.P., Denoncin K., Vertommen D., Hini- ker A., Cho S.H., Collet J.F.: Crystal structure of the outer membrane protein RcsF, a new substrate for the periplasmic protein-disulfide isomerase DsbC. J. Biol. Chem.286, 16734–16742 (2011)10.1074/jbc.M111.224865308951521454485Search in Google Scholar

Lin H.H., Tseng L.Y.: DBCP: a web server for disulfide bonding connectivity pattern prediction without the prior knowledge of the bonding state of cysteines. Nucleic Acids Res. 38, W503–507 (2010)10.1093/nar/gkq514289613320530534Search in Google Scholar

Marquez-Chamorro A.E., Aguilar-Ruiz J.S.: Soft Computing Methods for Disulfide Connectivity Prediction. Evol. Bioinform. Online, 11, 223–229 (2015)Search in Google Scholar

McCarthy A.A., Haebel P.W., Torronen A., Rybin V., Baker E.N., Metcalf P.: Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nat. Struct. Biol. 7, 196–199 (2000)Search in Google Scholar

McMahon R.M., Premkumar L., Martin J.L.: Four structural subclasses of the antivirulence drug target disulfide oxidoreductase DsbA provide a platform for design of subclass-specific inhibitors. Biochim. Biophys. Acta. 1844, 1391–1401 (2014)10.1016/j.bbapap.2014.01.01324487020Search in Google Scholar

Messens J., Collet J.F.: Pathways of disulfide bond formation in Escherichia coli. Int. J. Biochem. Cell Biol. 38, 1050–1062 (2006)Search in Google Scholar

Messens J., Collet J.F., Van Belle K., Brosens E., Loris R., Wyns L.: The oxidase DsbA folds a protein with a nonconsecutive disulfide. J. Biol. Chem. 282, 31302–31307 (2007)Search in Google Scholar

Premkumar L., Heras B., Duprez W., Walden P., Halili M., Kurth F., Fairlie D.P., Martin J.L.: Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases. Acta Crystallogr. D Biol. Crystallogr.69, 1981–1994 (2013)10.1107/S0907444913017800379264224100317Search in Google Scholar

Quan S., Schneider I., Pan J., Von Hacht A., Bardwell J.C.: The CXXC motif is more than a redox rheostat. J. Biol. Chem.. 282, 28823–28833 (2007)Search in Google Scholar

Raines R.T.: Ribonuclease A. Chem. Rev. 98, 1045–1066 (1998)Search in Google Scholar

Ren G., Champion M.M., Huntley J.F.: Identification of disulfide bond isomerase substrates reveals bacterial virulence factors. Mol. Microbiol.. 94, 926–944 (2014)Search in Google Scholar

Ren G., Stephan D., Xu Z., Zheng Y., Tang D., Harrison R.S., Kurz M., Jarrott R., Shouldice S.R., Hiniker A., Martin J.L., Heras B., Bardwell J.C.: Properties of the thioredoxin fold superfamily are modulated by a single amino acid residue. J. Biol. Chem. 284, 10150–10159 (2009)Search in Google Scholar

Roszczenko P., Radomska K.A., Wywial E., Collet J.F., Jagusztyn-Krynicka E.K.: A novel insight into the oxidoreductase activity of Helicobacter pylori HP0231 protein. PLoS ONE, 7, e46563 (2012)10.1371/journal.pone.0046563346356123056345Search in Google Scholar

Roszczenko P., Grzeszczuk M., Kobierecka P., Wywial E., Urbanowicz P., Wincek P., Nowak E., Jagusztyn-Krynicka E.K.: Helicobacter pylori HP0377, a member of the Dsb family, is an untypical multifunctional CcmG that cooperates with dimeric thioldisulfide oxidase HP0231. BMC Microbiol. 15, 135 (2015)10.1186/s12866-015-0471-z449121026141380Search in Google Scholar

Ruiz N., Chng S.S., Hiniker A., Kahne D., Silhavy T.J.: Nonconsecutive disulfide bond formation in an essential integral outer membrane protein. P. Natl. Acad. Sci. USA, 107, 12245–12250 (2010)10.1073/pnas.1007319107290148320566849Search in Google Scholar

Ruoppolo M., Torella C., Kanda F., Panico M., Pucci P., Marino G., Morris H.R.: Identification of disulphide bonds in the refolding of bovine pancreatic RNase A. Fold. Des. 1, 381–390 (1996)Search in Google Scholar

Segatori L., Paukstelis P.J., Gilbert H.F., Georgiou G.: Engineered DsbC chimeras catalyze both protein oxidation and disulfide-bond isomerization in Escherichia coli: Reconciling two competing pathways. P. Natl. Acad. Sci. USA, 101, 10018–10023 (2004)10.1073/pnas.040300310145415815220477Search in Google Scholar

Shouldice S.R., Heras B., Walden P.M., Totsika M., Schembri M.A., Martin J.L.: Structure and function of DsbA, a key bacterial oxidative folding catalyst. Antioxid. Redox Signal. 14, 1729–1760 (2011)10.1089/ars.2010.334421241169Search in Google Scholar

Singh R.: A review of algorithmic techniques for disulfide-bond determination. Brief. Funct. Genomic. Proteomic. 7, 157–172 (2008)Search in Google Scholar

Sinha S., Langford P.R., Kroll J.S.: Functional diversity of three different DsbA proteins from Neisseria meningitidis. Microbiology, 150, 2993–3000 (2004)10.1099/mic.0.27216-015347757Search in Google Scholar

Stirnimann C.U., Grutter M.G., Glockshuber R., Capitani G.: nDsbD: a redox interaction hub in the Escherichia coli periplasm. Cell Mol. Life Sci. 63, 1642–1648 (2006)Search in Google Scholar

Stirnimann C.U., Rozhkova A., Grauschopf U., Bockmann R.A., Glockshuber R., Capitani G., Grutter M.G.: High-resolution structures of Escherichia coli cDsbD in different redox states: A combined crystallographic, biochemical and computational study. J. Mol. Biol. 358, 829–845 (2006)10.1016/j.jmb.2006.02.03016545842Search in Google Scholar

Tinsley C.R., Voulhoux R., Beretti J.L., Tommassen J., Nassif X.: Three homologues, including two membrane-bound proteins, of the disulfide oxidoreductase DsbA in Neisseria meningitidis: effects on bacterial growth and biogenesis of functional type IV pili. J. Biol. Chem.279, 27078–27087 (2004)10.1074/jbc.M31340420015105427Search in Google Scholar

Wang X., Dutton R.J., Beckwith J., Boyd D.: Membrane topology and mutational analysis of Mycobacterium tuberculosis VKOR, a protein involved in disulfide bond formation and a homologue of human vitamin K epoxide reductase. Antioxid. Redox Signal. 14, 1413–1420 (2011)10.1089/ars.2010.3558306119820969481Search in Google Scholar

Watanabe M.M., Laurindo F.R., Fernandes D.C.: Methods of measuring protein disulfide isomerase activity: a critical overview. Frontiers in chemistry. 2, 73 (2014)10.3389/fchem.2014.00073415347025232538Search in Google Scholar

Williamson J.A., Cho S.H., Ye J., Collet J.F., Beckwith J.R., Chou J.J.: Structure and multistate function of the transmembrane electron transporter CcdA. Nat. Struct. Mol. Biol. 22, 809–814 (2015)Search in Google Scholar

Wunderlich M., Glockshuber R.: Redox properties of protein disulfide isomerase (DsbA) from Escherichia coli. Protein Sci. 2, 717–726 (1993)10.1002/pro.556002050321424958495194Search in Google Scholar

Yoon J.Y., Kim J., Lee S.J., Kim H.S., Im H.N., Yoon H.J., Kim K.H., Kim S.J., Han B.W., Suh S.W.: Structural and functional characterization of Helicobacter pylori DsbG. FEBS Lett. 585, 3862–3867 (2011)10.1016/j.febslet.2011.10.04222062156Search in Google Scholar

Zhou Y., Cierpicki T., Jimenez R.H., Lukasik S.M., Ellena J.F., Cafiso D.S., Kadokura H., Beckwith J., Bushweller J.H.: NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Mol. Cell. 31, 896–908 (2008)Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo