À propos de cet article

Citez

Aimanianda V., Bayry J., Bozza S., Kniemeyer O., Perruccio K., Elluru S.R., Clavaud C., Paris S., Brakhage A.A., Kaveri S.V., Romani L., Latgé J.P.: Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature, 460, 11171121 (2009)10.1038/nature0826419713928Search in Google Scholar

Alteri Ch.J., Xicohténcatl-Cortes J., Hess S., Caballero-Olín G., Girón J.A., Friedman R.L.: Mycobacterium tuberculosis produces pili during human infection. Proc. Natl. Acad. Sci. USA, 104, 5145–5150 (2007)10.1073/pnas.0602304104181783517360408Search in Google Scholar

Aoki W., Kitahara N., Miura N., Morisaka H., Kuroda K., Ueda M.: Profiling of adhesive properties of the agglutinin-like sequence (ALS) protein family, a virulent attribute of Candida albicans. FEMS Immunol. Med. Microbiol. 65, 121–124 (2012)Search in Google Scholar

Barak J.D., Gorski L., Naraghi-Aran P., Charkowski A.O.: Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Appl. Environ. Microbiol. 71, 5685–5691 (2005)Search in Google Scholar

Barnhart M.M., Chapman M.R.: Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147 (2006)10.1146/annurev.micro.60.080805.142106283848116704339Search in Google Scholar

Bian Z., Brauner A., Li Y., Normark S.: Expression of and cytokine activation by Escherichia coli curli fibers in human sepsis. J. Infect. Dis. 181, 602–612 (2000)Search in Google Scholar

Bokranz W., Wang X., Tschäpe H., Römling U.: Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J. Med. Microbiol. 54, 11711182 (2005)Search in Google Scholar

Bordeau V., Felden B.: Curli synthesis and biofilm formation in enteric bacteria are controlled by a dynamic small RNA module made up of a pseudoknot assisted by an RNA chaperone. Nucleic Acids Res. 42, 4682–4696 (2014)10.1093/nar/gku098398566924489123Search in Google Scholar

Branda S.S., Chu F., Kearns D.B., Losick R., Kolter R.: A major protein component of the Bacillus subtilis biofilm matrix. Mol. Microbiol. 59, 1229–1238 (2006).Search in Google Scholar

Cegelski L., Pinkner J.S., Hammer N.D., Cusumano C.K., Hung C.S., Chorell E., Åberg V., Walker J.N., Seed P.C., Almqvist F., Chapman M.R., Hultgren S.J.: Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nature Chem. Biology, 5, 913–919 (2009)Search in Google Scholar

Cheng N., He R., Tian J., Ye P.P., Ye R.D.: Cutting edge: TLR2 is a functional receptor for acute-phase serum amyloid A. J. Immunol. 181, 22–26 (2008)10.4049/jimmunol.181.1.22246445418566366Search in Google Scholar

Chirwa N.T., Herrington M.B.: CsgD, a regulator of curli and cellulose synthesis, also regulates serine hydroxymethyltrans-ferase synthesis in Escherichia coli K-12. Microbiology, 149, 525–535 (2003)10.1099/mic.0.25841-012624214Search in Google Scholar

Chiti F., Dobson C.M.: Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006)Search in Google Scholar

Cohen A.S., Calkins E.: Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature, 183, 1202–1203 (1959)10.1038/1831202a013657054Search in Google Scholar

Collinson S.K., Emödy L., Trust T.J., Kay W.W.: Thin aggregative fimbriae from diarrheagenic Escherichia coli. J. Bacteriol. 174, 4490–4495 (1992)10.1128/jb.174.13.4490-4495.19922062361624441Search in Google Scholar

de Jong W., Wösten H.A., Dijkhuizen L., Claessen D.: Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Mol. Microbiol. 73, 1128–1140 (2009)Search in Google Scholar

DeMarco M.L., Daggett V.: From conversion to aggregation: protofibril formation of the prion protein. Proc. Natl. Acad. Sci. USA, 101, 2293–2298 (2004)10.1073/pnas.030717810135694414983003Search in Google Scholar

Dobson C.M.: Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–332 (1999)Search in Google Scholar

Dueholm M.S., Petersen S.V., Sønderkær M., Larsen P., Christiansen G., Hein K.L., Enghild J.J., Nielsen J.L., Nielsen K.L., Nielsen P.H., Otzen D.E.: Functional amyloid in Pseudomonas. Mol. Microbiol. 77, 10091020 (2010)Search in Google Scholar

Dueholm M.S., Søndergaard M.T., Nilsson M., Christiansen G., Stensballe A., Overgaard M.T., Givskov M., Tolker-Nielsen T., Otzen D.E., Nielsen P.H.: Expression of Fap amyloids in Pseudomonas aeruginosa, P. fluorescens and P. putida results in aggregation and increased biofilm formation. Microbiology, 2, 365382 (2013)10.1002/mbo3.81368475323504942Search in Google Scholar

Ekkers D.M., Claessen D., Galli F., Stamhuis E.: Surface modification using interfacial assembly of the Streptomyces chaplin proteins. Appl. Microbiol. Biotechnol. 98, 4491–4501 (2014)Search in Google Scholar

Evans M.L., Chorell E., Taylor J.D., Åden J., Götheson A., Li F., Koch M., Sefer L., Matthews S.J., Wittung-Stafshede P., Almqvist F., Chapman M.R.: The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Mol. Cell. 57, 445–455 (2015)Search in Google Scholar

Flärdh K., Buttner M.J.: Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat. Rev. Microbiol. 7, 3649 (2009)10.1038/nrmicro196819079351Search in Google Scholar

Fowler D.M., Koulov A.V., Alory-Jost C., Marks M.S., Balch W.E., Kelly J.W.: Functional amyloid formation within mammalian tissue. PLoS Biol. 4, e6 (2006)10.1371/journal.pbio.0040006128803916300414Search in Google Scholar

Garcia-Sherman M.C., Lundberg T., Sobonya R.E., Lipke P.N., Klotz S.A.: A unique biofilm in human deep mycoses: fungal amyloid is bound by host serum amyloid P component. NPJ Biofilms Microbiomes, 1. pii, 15009 (2015)10.1038/npjbiofilms.2015.9456399626366292Search in Google Scholar

Garcia-Sherman M.C., Lysak N., Filonenko A., Richards H., Sobonya R.E., Klotz S.A., Lipke P.N.: Peptide detection of fungal functional amyloids in infected tissue. PLoS One, 21, e86067 (2014)10.1371/journal.pone.0086067389764024465872Search in Google Scholar

Gebbink M.F., Claessen D., Bouma B., Dijkuhuizen L., Wosten H.A.: Amyloids-a functional coat for microorganisms. Nat. Rev. 3, 333–341 (2005)Search in Google Scholar

Gerstel U., Römling U.: Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella Typhimurium. Environ. Microbiol. 3, 638–648 (2001)10.1046/j.1462-2920.2001.00235.x11722544Search in Google Scholar

Glabe C.G.: Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol. Aging. 27, 570–575 (2006)Search in Google Scholar

Go N.: The consistency principle in protein structure and pathways of folding. Adv. Biophys. 18, 149–164 (1984)Search in Google Scholar

Goldwater P.N., Bettelheim K.A.: Curliated Escherichia coli, soluble curlin and the sudden infant death syndrome (SIDS). J. Med. Microbiol. 51, 10091012 (2002)Search in Google Scholar

Gophna U., Barlev M., Seijffers R., Oelschlager T.A., Hacker J., Ron E.Z.: Curli fibers mediate internalization of Escherichia coli by eukaryotic cells. Infect. Immun. 69, 26592665 (2001)Search in Google Scholar

Hammar M., Bian Z., Normark S.: Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proc. Natl. Acad. Sci. USA, 93, 65626566 (1996)10.1073/pnas.93.13.6562390648692856Search in Google Scholar

Herbst F.A., Søndergaard M.T., Kjeldal H., Stensballe A., Nielsen P.H., Dueholm M.S.: Major proteomic changes associated with amyloid-induced biofilm formation in Pseudomonas aeruginosa PAO1. J. Proteome. Res. 14, 720–781 (2015).Search in Google Scholar

Herczenik E., Gebbink M.F.: Molecular and cellular aspects of protein misfolding and disease. FASEB J. 22, 2115–2133 (2008)10.1096/fj.07-09967118303094Search in Google Scholar

Hetz C., Bono M.R., Barros L.F., Lagos R.: Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc. Natl. Acad. Sci. USA, 99, 2696–2701 (2002)10.1073/pnas.05270969912241011880624Search in Google Scholar

Hinson G., Knutton S., Lpm-Po-Tang M.K., McNeish A.S., Williams P.H.: Adherence to human colonocytes of an Escherichia coli strain isolated from severe infantile enteritis: molecular and ultrastructural studies of a fibrillar adhesin. Infect. Immun. 55, 393–402 (1987)10.1128/iai.55.2.393-402.19872603402879795Search in Google Scholar

Hufnagel D.A., Tükel C., Chapman M.R.: Disease to dirt: the biology of microbial amyloids. PLoS Pathog. 9, e1003740 (2013)10.1371/journal.ppat.1003740383671524278013Search in Google Scholar

Hung C., Marschall J., Burnham C.A., Byun A.S., Henderson J.P.: The bacterial amyloid curli is associated with urinary source bloodstream infection. PLoS One, 9, e86009 (2014)10.1371/journal.pone.0086009Search in Google Scholar

Johansson C., Nilsson T., Olsén A., Wick M.J.: The influence of curli, a MHC-I-binding bacterial surface structure, on macrophage-T cell interactions. FEMS Immunol. Med. Microbiol. 30, 21–29 (2001)Search in Google Scholar

Kai-Larsen Y., Lüthje P., Chromek M., Peters V., Wang X., Holm A., Kádas L., Hedlund K.O., Johansson J., Chapman M.R., Jacobson S.H., Römling U., Agerberth B., Brauner A.: Uropathogenic Escherichia coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37. PLoS Pathog. 6, e1001010 (2010)10.1371/journal.ppat.1001010Search in Google Scholar

Kaper J.B., Nataro J.P., Mobley H.L.: Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 12–40 (2004)Search in Google Scholar

Kikuchi T., Mizunoe Y., Takade A., Naito S., Yoshida S.: Curli fibers are required for development of biofilm architecture in Escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells. Microbiol. Immunol. 49, 875–884 (2005)Search in Google Scholar

Klein R.D., Hultgren S.J.: Chaos controlled: discovery of a powerful amyloid inhibitor. Mol. Cell. 57, 391–393 (2015)Search in Google Scholar

Klunk W.E., Jacob R.F., Mason R.P.: Quantifying amyloid by congo red spectral shift assay. Methods Enzymol. 309, 285–305 (1999)10.1016/S0076-6879(99)09021-7Search in Google Scholar

Kudinha T., Johnson J.R., Andrew S.D., Kong F., Anderson P., Gilbert G.L.: Genotypic and phenotypic characterization of Escherichia coli isolates from children with urinary tract infection and from healthy carriers. Pediatr. Infect. Dis. J. 32, 543–548 (2013)Search in Google Scholar

Lagos R., Wilkens M., Vergara C., Cecchi X., Monasterio O.: Microcin E492 forms ion channels in phospholipid bilayer membrane. FEMS Lett. 321, 145–148 (1993)10.1016/0014-5793(93)80096-DSearch in Google Scholar

Larsen P., Nielsen J.L., Dueholm M.S., Wetzel R., Otzen D., Nielsen P.H.: Amyloid adhesins are abundant in natural biofilms. Environ. Microbiol. 9, 30773090 (2007)Search in Google Scholar

Levine H.R.: Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol. 309, 274–284 (1999)10.1016/S0076-6879(99)09020-5Search in Google Scholar

Liu S., Liu Y., Hao W., Wolf L., Kiliaan A.J., Penke B., Rübe C.E., Walter J., Heneka M.T., Hartmann T., Menger M.D., Fassbender K.: TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. J. Immunol. 188, 10981107 (2012)10.4049/jimmunol.110112122198949Search in Google Scholar

Liu Z., Niu H., Wu S., Huang R.: CsgD regulatory network in a bacterial trait-altering biofilm formation. Emerg. Microbes Infect. DOI: 10.1038/emi.2014Search in Google Scholar

Macindoe I., Kwan A.H., Ren Q., Morris V.K., Yang W., Mackay J.P., Sunde M.: Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. Proc. Natl. Acad. Sci. USA, 109, 804–811 (2012)10.1073/pnas.1114052109332566822308366Search in Google Scholar

Mansan-Almeida R., Pereira A.L., Giugliano L.G.: Diffusely adherent Escherichia coli strains isolated from children and adults constitute two different populations. BMC Microbiol. 13, 22 (2013)10.1186/1471-2180-13-22357746723374248Search in Google Scholar

Marcoleta A., Marín M., Mercado G., Valpuesta J.M., Monasterio O., Lagos R.: Microcin e492 amyloid formation is retarded by posttranslational modification. J. Bacteriol. 195, 3995–4004 (2013)10.1128/JB.00564-13375459123836864Search in Google Scholar

McCrate O.A., Zhou X., Cegelski L., Curcumin as an Amyloid-indicator Dye in E. coli. Chem. Commun. (Camb). 49, 4193– 4195 (2013)10.1039/c2cc37792f363363923287899Search in Google Scholar

Moore R.A., Hayes S.F., Fischer E.R., Priola S.A.: Amyloid formation via supramolecular peptide assemblies. Biochemistry, 46, 7079–7087 (2007)10.1021/bi700247ySearch in Google Scholar

Morris V.K., Ren Q., Macindoe I., Kwan A.H., Byrne N., Sunde M.: Recruitment of class I hydrophobins to the air:water interface initiates a multi-step process of functional amyloid formation. J. Biol. Chem. 286, 15955–15963 (2011)Search in Google Scholar

Naidoo N., Ramsugit S., Pillay M.: Mycobacterium tuberculosis pili (MTP), a putative biomarker for a tuberculosis diagnostic test. Tuberculosis, 94, 338–345 (2014)10.1016/j.tube.2014.03.004Search in Google Scholar

Nishimori J.H., Newman T.N., Oppong G.O., Rapsinski G.J., Yen J.H., Biesecker S.G., Wilson R.P., Butler B.P., Winter M.G., Tsolis R.M., Ganea D., Tükel Ç.: Microbial amyloids induce interleukin 17A (IL-17A) and IL-22 responses via Toll-like receptor 2 activation in the intestinal mucosa. Infect. Immun. 80, 43984408 (2012)10.1128/IAI.00911-12Search in Google Scholar

Nordstedt C., Näslund J., Tjernberg L.O., Karlström A.R., Thyberg J., Terenius L.: The Alzheimer A beta peptide develops protease resistance in association with its polymerization into fibrils. J. Biol. Chem. 269, 30773–30776 (1994)Search in Google Scholar

Norinder B.S., Köves B., Yadav M., Brauner A., Svanborg C.: Do Escherichia coli strains causing acute cystitis have a distinct virulence repertoire? Microb. Pathog. 52, 1016 (2012)Search in Google Scholar

Oh J., Kim J.G., Jeon E., Yoo C.H., Moon J.S., Rhee S., Hwang I.: Amyloidogenesis of type III-dependent harpins from plant pathogenic bacteria. J. Biol. Chem. 282, 13601–13609 (2007)Search in Google Scholar

Oli M.W., Otoo H.N., Crowley P.J., Heim K.P., Nascimento M.M., Ramsook C.B., Lipke P.N., Brady L.J.: Functional amyloid formation by Streptococcus mutans. Microbiology, 158, 2903–2916 (2012)10.1099/mic.0.060855-0Search in Google Scholar

Olsén A., Herwald H., Wikström M., Persson K., Mattsson E., Björck L.: Identification of two protein-binding and functional regions of curli, a surface organelle and virulence determinant of Escherichia coli. J. Biol. Chem. 277, 34568–34572 (2002)Search in Google Scholar

Olsén A., Herwald H., Wikstrum M., Persson K., Mattsson E., Bjorck L.: Identification of two protein-binding and functional regions of curli, a surface organelle and virulence determinant of Escherichia coli. J. Biol. Chem. 277, 3456834572 (2002).Search in Google Scholar

Olsén A., Jonsson A., Normark S.: Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature, 338, 652–655 (1989)10.1038/338652a0Search in Google Scholar

Olsén A., Wick M.J., Mörgelin M., Björck L.: Curli, fibrous surface proteins of Escherichia coli, interact with major histocompatibility complex class I molecules. Infect. Immun. 66, 944949 (1998)Search in Google Scholar

Oppong G.O., Rapsinski G.J., Tursi S.A., Biesecker S.G., Klein-Szanto A.J.P., Goulian M., McCauley C., Healy C., Wilson R.P., Tükel C.: Biofilm-associated bacterial amyloids dampen inflammation in the gut: oral treatment with curli fibres reduces the severity of hapten-induced colitis in mice. npj Biofilms and Microbiomes, DOI:10.1038/npjbiofilms.2015.1910.1038/npjbiofilms.2015.19Search in Google Scholar

Osherovich L.Z., Weissman J.S.: Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI(+)] prion. Cell, 106, 183–194 (2001)10.1016/S0092-8674(01)00440-8Search in Google Scholar

Otoo H.N., Lee K.G., Qiu W., Lipke P.N.: Candida albicans Als adhesins have conserved amyloid-forming sequences. Eukaryot. Cell. 7, 776–782 (2008)Search in Google Scholar

Pawar D.M., Rossman M.L., Chen J.Ł.: Role of curli fimbriae in mediating the cells of enterohaemorrhagic Escherichia coli to attach to abiotic surfaces. J. Appl. Microbiol. 99, 418425 (2005)Search in Google Scholar

Perutz M.F., Finch J.T., Berriman J., Lesk A.: Amyloid fibers are water-filled nanotubes. Proc. Natl. Acad. Sci. USA, 99, 55915595 (2002)10.1073/pnas.04268139912281411960014Search in Google Scholar

Ramsugit S., Guma S., Pillay B., Jain P., Larsen M.H., Danaviah S., Pillay M.: Pili contribute to biofilm formation in vitro in Mycobacterium tuberculosis. Antonie Van Leeuwenhoek, 104, 725–735 (2013)10.1007/s10482-013-9981-623907521Search in Google Scholar

Ramsugit S., Pillay B., Pillay M.: Evaluation of the role of Mycobacterium tuberculosis pili (MTP) as an adhesin, invasin, and cytokine inducer of epithelial cells. Braz. J. Infect. Dis. 20, 160– 165 (2016)Search in Google Scholar

Rapsinski G.J., Wynosky-Dolfi M.A., Oppong G.O., Tursi S.A., Wilson R.P., Brodsky I.E., Tükel Ç.: Toll-like receptor 2 and NLRP3 cooperate to recognize a functional bacterial amyloid, curli. Infect. Immun. 83, 693701 (2015)Search in Google Scholar

Romero D., Aguilar C., Losick R., Kolter R.: Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc. Natl. Acad. Sci. USA, 107, 2230–2234 (2010)10.1073/pnas.0910560107283667420080671Search in Google Scholar

Romero D., Vlamakis H., Losick R., Kolter R.: An accessory protein required for anchoring and assembly of amyloid fibers in B. subtilis biofilms. Mol. Microbiol. 80, 1155–1168 (2011)Search in Google Scholar

Romero D., Vlamakis H., Losick R., Kolter R.: Functional analysis of the accessory protein TapA in Bacillus subtilis amyloid fiber assembly. J. Bacteriol. 196, 1505–1513 (2014)10.1128/JB.01363-13399335824488317Search in Google Scholar

Römling U., Rohde M., Olsén A., Normark S., Reinköster J.: AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella Typhimurium regulates at least two independent pathways. Mol. Microbiol. 36, 10–23 (2000)Search in Google Scholar

Ryu J.H., Kim H., Frank J.F., Beuchat L.R.: Attachment and biofilm formation on stainless steel by Escherichia coli O157:H7 as affected by curli production. Lett. Appl. Microbiol. 39, 359362 (2004)Search in Google Scholar

Schwartz K., Ganesan M., Payne D.E., Solomon M.J., Boles B.R.: Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms. Mol. Microbiol. 99, 123–134 (2016)Search in Google Scholar

Schwartz K., Syed A.K., Stephenson R.E., Rickard A.H., Boles B.R.: Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog. 8(6):e1002744 (2012)10.1371/journal.ppat.1002744336995122685403Search in Google Scholar

Shahnawaz M., Soto C.: Microcin amyloid fibrils A are reservoir of toxic oligomeric species. J. Biol. Chem. 287, 11665–11676 (2012)Search in Google Scholar

Sheppard D.C., Yeaman M.R., Welch W.H., Phan Q.T., Fu Y., Ibrahim A.S., Filler S.G., Zhang M., Waring A.J., Edwards J.E. Jr.: Functional and structural diversity in the Als protein family of Candida albicans. J. Biol. Chem. 279, 30480–30489 (2004)Search in Google Scholar

Sipe J.D., Cohen A.S.: Review: history of the amyloid fibril. J. Struct. Biol. 130, 88–98 (2000)Search in Google Scholar

Sitaras C., Naghavi M., Herrington M.B.: Sodium dodecyl sulfate-agarose gel electrophoresis for the detection and isolation of amyloid curli fibers. Anal. Biochem. 408, 328–331 (2011)Search in Google Scholar

Smith J.F., Knowles T.P., Dobson C.M., Macphee C.E., Welland M.E.: Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl. Acad. Sci. USA, 103, 15806–15811 (2006)10.1073/pnas.0604035103163508417038504Search in Google Scholar

Sobieszczańska B.M., Dobrowolska M.: Synteza fimbrii curli przez szczepy Escherichia coli izolowane z przypadków biegunek dzieciecych. Med. Dośw. Mikrobiol. 56, 239–244 (2005)Search in Google Scholar

Stöver A.G., Driks A.: Secretion, localization, and antibacterial activity of TasA, a Bacillus subtilis spore-associated protein. J. Bacteriol. 181, 1664–1672 (1999)10.1128/JB.181.5.1664-1672.19999355910049401Search in Google Scholar

Syed A.K., Boles B.R.: Fold modulating function: bacterial toxins to functional amyloids. Front. Microbiol. 5, 401 (2014)10.3389/fmicb.2014.00401411803225136340Search in Google Scholar

Tükel C., Nishimori J.H., Wilson R.P., Winter M.G., Keestra A.M., van Putten J.P., Bäumler A.J.: Toll-like receptors 1 and 2 cooperatively mediate immune responses to curli, a common amyloid from enterobacterial biofilms. Cell. Microbiol. 12, 14951505 (2010)Search in Google Scholar

Tükel C., Raffatellu M., Humphries A.D., Wilson R.P., Andrews-Polymenis H.L., Gull T., Figueiredo F., Wong M.H., Michelsen K.S., Akçelik M., Adams L.G., Bäumler A.J.: CsgA is a pathogen-associated molecular pattern of Salmonella enterica serotype Typhimurium that is recognized by Toll-like receptor 2. Mol. Microbiol. 58, 289304 (2005)10.1111/j.1365-2958.2005.04825.x16164566Search in Google Scholar

Uhlich G.A., Keen J.E., Elder R.O.: Mutations in the csgD promoter associated with variations in curli expression in certain strains of Escherichia coli O157:H7. Appl. Environ. Microbiol. 67, 2367–2370 (2001)Search in Google Scholar

Vidal O., Longin R., Prigent-Combaret C., Dorel C., Hooreman M., Lejeune P.: Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J. Bacteriol. 180, 2442–2449 (1998)10.1128/JB.180.9.2442-2449.19981071879573197Search in Google Scholar

Wang X., Rochon M., Lamprokostopoulou A., Lünsdorf H., Nimtz M., Römling U.: Impact of biofilm matrix components on interaction of commensal Escherichia coli with the gastrointestinal cell line HT-29. Cell. Mol. Life Sci. 63, 23522363 (2006)Search in Google Scholar

Westwell-Roper C., Ehses J.A., Verchere B.C.: Activation of Toll-like receptor 2 by islet amyloid polypeptide: a trigger for islet inflammation in type 2 diabetes? Can. J. Diabetes, 36, S18 (2012)10.1016/j.jcjd.2012.07.076Search in Google Scholar

Zhou Y., Smith D.R., Hufnagel D.A., Chapman M.R.: Experimental manipulation of the microbial functional amyloid called curli. Methods Mol. Biol. 966, 53–75 (2013)Search in Google Scholar

Zogaj X., Bokranz W., Nimtz M., Romling U.: Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun. 71, 4151–4158 (2003)10.1128/IAI.71.7.4151-4158.200316201612819107Search in Google Scholar

eISSN:
2545-3149
Langues:
Anglais, Polaco
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Microbiology and Virology