À propos de cet article

Citez

1. Kim SG, Malek M, Sigurdsson A, Lin LM, Kahler B. Regenerative endodontics: A comprehensive review. Int Endod J 2018;51(12):1367-88. doi: 10.1111/iej.12954.10.1111/iej.1295429777616 Search in Google Scholar

2. Lanza R, Langer R, Vacanti J, editors. Principles of tissue engineering. 3rd ed. Amsterdam: Elsevier Academic Press; 2007. p. 1067-77. Search in Google Scholar

3. Lynch SE. Introduction. In: Lynch SE, Marx RE, Nevis M, Lynch LA, editors. Tissue engineering: Applications in oral and maxillofacial surgery and periodontics. 2nd ed. Chicago: Quintessence Publishing; 2006. p. 11-5. Search in Google Scholar

4. Bakhtiar H, Mazidi SA, Mohammadi Asl S, Ellini MR, Moshiri A, Nekoofar MH, et al. The role of stem cell therapy in regeneration of dentine-pulp complex: a systematic review. Prog Biomater 2018;7(4):249-68. doi: 10.1007/s40204-018-0100-7.10.1007/s40204-018-0100-7630417730267369 Search in Google Scholar

5. Eramo S, Natali A, Pinna R, Milia E. Dental pulp regeneration via cell homing. Int Endod J 2018;51(4):405-19. doi: 10.1111/iej.12868.10.1111/iej.1286829047120 Search in Google Scholar

6. Nakashima M, Iohara K, Murakami M, Nakamura H, Sato Y, Ariji Y, et al. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Res Ther 2017;8(1):61. doi: 10.1186/s13287-017-0506-5.10.1186/s13287-017-0506-5534514128279187 Search in Google Scholar

7. Nakashima M, Iohara K. Recent progress in translation from bench to a pilot clinical study on total pulp regeneration. J Endod 2017;43(9S):S82-6. doi: 10.1016/j.joen.2017.06.014.10.1016/j.joen.2017.06.01428778509 Search in Google Scholar

8. Bjørndal L, Kirkevang L-L, Whitworth J. Textbook of endodontology. 3rd ed. Oxford: Wiley Blackwell; 2018. p. 61-78. Search in Google Scholar

9. Smith AJ, Cassidy N, Perry H, Bègue-Kirn C, Ruch JV, Lesot H. Reactionary dentinogenesis. Int J Dev Biol 1995;39(1):273-80. Search in Google Scholar

10. Nowicka A, Parafiniuk M, Lipski M, Lichota D, Buczkowska-Radlińska J. Pulpo-dentin complex response after direct capping with self-etch adhesive systems. Folia Histochem Cytobiol 2012;50(4):565-73. doi: 10.5603/20325.10.5603/FHC.2012.0079 Search in Google Scholar

11. Shah D, Lynd T, Ho D, Chen J, Vines J, Jung HD, et al. Pulp-dentin tissue healing response: a discussion of current biomedical approaches. J Clin Med 2020;9(2):434. doi: 10.3390/jcm9020434.10.3390/jcm9020434707434032033375 Search in Google Scholar

12. Cooper PR, Takahashi Y, Graham LW, Simon S, Imazato S, Smith AJ. Inflammation-regeneration interplay in the dentine-pulp complex. J Dent 2010;38(9):687-97. doi: 10.1016/j.dent.2010.05.016. Search in Google Scholar

13. Smith AJ, Duncan HF, Diogenes A, Simon S, Cooper PR. Exploiting the bio-active properties of the dentin-pulp complex in regenerative endodontics. J Endod 2016;42(1):47-56. doi: 10.1016/j.joen.2015.10.019.10.1016/j.joen.2015.10.01926699924 Search in Google Scholar

14. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005;105(4):1815-22. doi: 10.1182/blood-2004-04-1559.10.1182/blood-2004-04-155915494428 Search in Google Scholar

15. Saghiri M.A, Asatourian A, Sorenson CM, Sheibani N. Role of angiogenesis in endodontics: contributions of stem cells and proangiogenic and antiangiogenic factors to dental pulp regeneration. J Endod 2015;41(6):797-803. doi: 10.1016/j.joen.2014.12.019.10.1016/j.joen.2014.12.019522320125649306 Search in Google Scholar

16. He L, Kim SG, Gong Q, Zhong J, Wang S, Zhou X, et al. Regenerative endodontics for adult patients. J Endod 2017;43(9S):S57-64. doi: 10.1016/j. joen.2017.06.012. Search in Google Scholar

17. Spector M. Basic principles of scaffold in tissue engineering. In: Lynch SE, Marx RE, Nevins M, Lynch LA, editors. Tissue engineering: Application in oral and maxillofacial surgery and periodontics. 2nd ed. Chicago: Quintessence Publishing; 2006. p. 26-32. Search in Google Scholar

18. Alshehadat SA, Thu HA, Hamid SSA, Nurul AA, Rani SA, Ahmad A. Scaffolds for dental pulp tissue regeneration: A review. Int Dent & Med J Adv Res 2016;2:1-12. doi: 10.15713/ins.idmjar.36.10.15713/ins.idmjar.36 Search in Google Scholar

19. Altaii M, Richards L, Rossi-Fedele G. Histological assessment of regenerative endodontic treatment in animal studies with different scaffolds: A systematic review. Dent Traumatol 2017;33(4):235-44. doi: 10.1111/edt.12338.10.1111/edt.1233828342218 Search in Google Scholar

20. Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 2008;17 Suppl 4(Suppl 4):467-79. doi: 10.1007/s00586-008-0745-3.10.1007/s00586-008-0745-3258765819005702 Search in Google Scholar

21. Zhang W, Walboomers XF, van Kuppevelt TH, Daamen WF, Bian Z, Jansen JA. The performance of human dental pulp stem cells on different three-dimensional scaffold materials. Biomaterials 2006;27(33):5658–68. doi: 10.1016/j.biomaterials.2006.07.013.10.1016/j.biomaterials.2006.07.01316916542 Search in Google Scholar

22. Lambrichts I, Driesen RB, Dillen Y, Gervois P, Ratajczak J, Vangansewinkel T, et al. Dental pulp stem cells: their potential in reinnervation and angiogenesis by using scaffolds. J Endod 2017;43(9S):S12-6. doi: 10.1016/j. joen.2017.06.001. Search in Google Scholar

23. Thibodeau B, Trope M. Pulp revascularization of a necrotic infected immature permanent tooth: Case report and review of the literature. Pediatr Dent 2007;29(1):47-50. Search in Google Scholar

24. Anitua E. Plasma rich in growth factors: preliminary results of use in the preparation of future sites for implants. Int J Oral Maxillofac Implants 1999;14(4):529-35. Search in Google Scholar

25. Metlerska J, Fagogeni I, Nowicka A. Efficacy of autologous platelet concentrates in regenerative endodontic treatment: a systematic review of human studies. J Endod 2019;45(1):20-30. doi: 10.1016/j.joen.2018.09.003.10.1016/j.joen.2018.09.00330446403 Search in Google Scholar

26. Bezgin T, Yilmaz AD, Celik BN, Sönmez H. Concentrated platelet-rich plasma used in root canal revascularization: 2 case reports. Int Endod J 2014;47(1):41-9. doi: 10.1111/iej.12144.10.1111/iej.1214423772873 Search in Google Scholar

27. Bezgin T, Yilmaz AD, Celik BN, Kolsuz ME, Sonmez H. Efficacy of platelet--rich plasma as a scaffold in regenerative endodontic treatment. J Endod 2015;41(1):36-44. doi: 10.1016/j.joen.2014.10.004.10.1016/j.joen.2014.10.00425459571 Search in Google Scholar

28. Galler KM, Krastl G, Simon S, Van Gorp G, Meschi N, Vahedi B, et al. European Society of Endodontology position statement: Revitalization procedures. Int Endod J 2016;49(8):717-23. doi: 10.1111/iej.12629.10.1111/iej.1262926990236 Search in Google Scholar

29. Jadhav GR, Shah D, Raghvendra SS. Autologus platelet rich fibrin aided revascularization of an immature, non-vital permanent tooth with apical periodontitis: A case report. J Nat Sci Biol Med 2015;6(1):224-5. doi: 10.4103/0976-9668.149187.10.4103/0976-9668.149187436704325810668 Search in Google Scholar

30. Meza G, Urrejola D, Saint Jean N, Inostroza C, López V, Khoury M, et al. Personalized cell therapy for pulpitis using autologous dental pulp stem cells and leukocyte platelet-rich fibrin: a case report. J Endod 2019;45(2):144-9. doi: 10.1016/j.joen.2018.11.009.10.1016/j.joen.2018.11.00930711169 Search in Google Scholar

31. Bakhtiar H, Esmaeili S, Fakhr Tabatabayi S, Ellini MR, Nekoofar MH, Dummer PMH. Second-generation platelet concentrate (platelet-rich fibrin) as a scaffold in regenerative endodontics: a case series. J Endod 2017;43(3):401-8. doi: 10.1016/j.joen.2016.10.016.10.1016/j.joen.2016.10.016 Search in Google Scholar

32. Choukroun J, Ghanaati S. Reduction of relative centrifugation force within injectable platelet-rich fibrin (PRF) concentrates advances patients’ own inflammatory cells, platelets and growth factors: the first introduction to the low speed centrifugation concept. Eur J Trauma Emerg Surg 2018;44(1):87-95. doi: 10.1007/s00068-017-0767-9.10.1007/s00068-017-0767-9 Search in Google Scholar

33. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJJ, Mouhyi J, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101(3):e37-44. doi: 10.1016/j.tripleo.2005.07.008.10.1016/j.tripleo.2005.07.008 Search in Google Scholar

34. Chen YJ, Zhao YH, Zhao YJ, Liu NX, Lv X, Li Q, et al. Potential dental pulp revascularization and odonto-/osteogenic capacity of a novel transplant combined with dental pulp stem cells and platelet-rich fibrin. Cell Tissue Res 2015;361(2):439-55. doi: 10.1007/s00441-015-2125-8.10.1007/s00441-015-2125-8 Search in Google Scholar

35. Pinto N, Harnish A, Cabrera C, Andrade C, Druttman T, Brizuela C. An innovative regenerative endodontic procedure using leukocyte and platelet-rich fibrin associated with apical surgery: a case report. J Endod 2017;43(11):1828-34. doi: 10.1016/j.joen.2017.07.002.10.1016/j.joen.2017.07.002 Search in Google Scholar

36. Bäumchen F, Smeets R, Koch D, Gräber HG. The impact of defined polyglycolide scaffold structure on the proliferation of gingival fibroblasts in vitro: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108(4):505-13. doi: 10.1016/j.tripleo.2009.05.004.10.1016/j.tripleo.2009.05.004 Search in Google Scholar

37. Jain RA. The manufacturing techniques of various drug loaded bio-degradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000;21(23):2475-90. doi: 10.1016/s0142-9612(00)00115-0.10.1016/S0142-9612(00)00115-0 Search in Google Scholar

38. Mooney DJ, Powell C, Piana J, Rutherford B. Engineering dental pulp-like tissue in vitro. Biotechnol Prog 1996;12(6):865-8. doi: 10.1021/bp960073f.10.1021/bp960073f8983211 Search in Google Scholar

39. Tonomura A, Mizuno D, Hisada A, Kuno N, Ando Y, Sumita Y, et al. Differential effect of scaffold shape on dentin regeneration. Ann Biomed Eng 2010;38(4):1664-71. doi: 10.1007/s10439-010-9910-z.10.1007/s10439-010-9910-z20087773 Search in Google Scholar

40. Chan G, Mooney DJ. New materials for tissue engineering: Towards greater control over the biological response. Trends Biotechnol 2008;26(7):382-92.10.1016/j.tibtech.2008.03.01118501452 Search in Google Scholar

41. Ando Y, Honda MJ, Ohshima H, Tonomura A, Ohara T, Itaya T, et al. The induction of dentin bridge-like structures by constructs of subcultured dental pulp-derived cells and porous HA/TCP in porcine teeth. Nagoya J Med Sci 2009;71(1-2):51-62. Search in Google Scholar

42. Liao F, Chen Y, Li Z, Wang Y, Shi B, Gong Z, et al. A novel bioactive three-dimensional beta-tricalcium phosphate/chitosan scaffold for periodontal tissue engineering. J Mater Sci Mater Med 2010;21(2):489-96. doi: 10.1007/s10856-009-3931-x.10.1007/s10856-009-3931-x Search in Google Scholar

43. Yoshikawa M, Tsuji N, Shimomura Y, Hayashi H, Ohgushi H. Effects of laminin for osteogenesis in porous hydroxyapatite. Macromol Symp 2007;253(1):172-8. doi: 10.1002/masy.200750724.10.1002/masy.200750724 Search in Google Scholar

44. Zhang L, Morsi Y, Wang Y, Li Y, Ramakrishna S. Review scaffold design and stem cells for tooth regeneration. Jpn Dental Sci Rev 2013;49(1):14-26. doi: 10.1016/j.jdsr.2012.09.001.10.1016/j.jdsr.2012.09.001 Search in Google Scholar

45. Denissen H, Montanari C, Martinetti R, van Lingen A, van den Hooff A. Alveolar bone response to submerged bisphosphonate-complexed hydroxyapatite implants. J Periodontol 2000;71(2):279-86. doi: 10.1902/jop.2000.71.2.279.10.1902/jop.2000.71.2.279 Search in Google Scholar

46. Chen L, Liu L, Wu C, Yang R, Chang J, Wei X. The extracts of bredigite bioceramics enhanced the pluripotency of human dental pulp cells. J Biomed Mater Res A 2017;105(12):3465-74. doi: 10.1002/jbm.a.3619. Search in Google Scholar

47. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, et al. Bioactive glass in tissue engineering. Acta Biomater 2011;7(6):2355-73. doi: 10.1016/j.actbio.2011.03.016.10.1016/j.actbio.2011.03.016 Search in Google Scholar

48. Inuyama Y, Kitamura C, Nishihara T, Morotomi T, Nagayoshi M, Tabata Y, et al. Effects of hyaluronic acid sponge as a scaffold on odontoblastic cell line and amputated dental pulp. J Biomed Mater Res B Appl Biomater 2010;92(1):120-8. doi: 10.1002/jbm.b.31497.10.1002/jbm.b.31497 Search in Google Scholar

49. Prescott RS, Alsanea R, Fayad MI, Johnson BR, Wenckus CS, Hao J, et al. In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J Endod 2008;34(4):421-6. doi: 10.1016/j. joen.2008.02.005. Search in Google Scholar

50. Alshehadat SA. Interaction of amniotic membrane with deciduous teeth stem cells as potential scaffold for dental pulp tissue engineering. Malaysia: Universiti Sains Malaysia School of Dental Sciences; 2014. Search in Google Scholar

51. Madihally S, Matthew HW. Porous chitosan scaffolds for tissue engineering. Biomaterials 1999;20(12):1133-42. doi: 10.1016/s0142-9612(99)00011-3.10.1016/S0142-9612(99)00011-3 Search in Google Scholar

52. Seol YJ, Lee JY, Park YJ, Lee YM, Young-Ku, Rhyu IC, et al. Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett 2004;26(13):1037-41. doi: 10.1023/B:BILE.0000032962.79531.fd.10.1023/B:BILE.0000032962.79531.fd Search in Google Scholar

53. Kikuchi H, Sawada T, Yanagisawa T. Effects of a functional agar surface on in vitro dentinogenesis induced in proteolytically isolated, agar-coated dental papillae in rat mandibular incisors. Arch Oral Biol 1996;41(8-9):871-83. doi: 10.1016/s0003-9969(96)00022-2.10.1016/S0003-9969(96)00022-2 Search in Google Scholar

54. Hori Y, Winans AM, Irvine DJ. Modular injectable matrices based on alginate solution/microsphere mixtures that gel in situ and co-deliver immunomodulatory factors. Acta Biomater 2009;5(4):969-82. doi: 10.1016/j. actbio.2008.11.019. Search in Google Scholar

55. Kumabe S, Nakatsuka M, Kim GS, Jue SS, Aikawa F, Shin JW, et al. Human dental pulp cell culture and cell transplantation with an alginate scaffold. Okajimas Folia Anat Jpn 2006;82(4):147-55. doi: 10.2535/ofaj.82.147.10.2535/ofaj.82.14716526573 Search in Google Scholar

56. Suh J, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 2000;21(24):2589-98. doi: 10.1016/s0142-9612(00)00126-5.10.1016/S0142-9612(00)00126-5 Search in Google Scholar

57. Fayazi S, Takimoto K, Diogenes A. Comparative evaluation of chemotactic factor effect on migration and differentiation of stem cells of the apical papilla. J Endod 2017;43(8):1288-93. doi: 10.1016/j.joen.2017.03.012.10.1016/j.joen.2017.03.012 Search in Google Scholar

58. Roberts-Clark DJ, Smith AJ. Angiogenic growth factors in human dentine matrix. Arch Oral Biol 2000;45(11):1013-6. doi: 10.1016/s0003-9969(00)00075-3.10.1016/S0003-9969(00)00075-3 Search in Google Scholar

59. Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol 2003;21(9):1025-32. doi: 10.1038/nbt864.10.1038/nbt86412949568 Search in Google Scholar

60. Chrepa V, Henry MA, Daniel BJ, Diogenes A. Delivery of apical mesenchymal stem cells into root canals of mature teeth. J Dent Res 2015;94(12):1653-9. doi: 10.1177/0022034515596527.10.1177/0022034515596527672857326195498 Search in Google Scholar

61. Suzuki T, Lee CH, Chen M, Zhao W, Fu SY, Qi JJ, et al. Induced migration of dental pulp stem cells for in vivo pulp regeneration. J Dent Res 2011;90(8):1013-8. doi: 10.1177/0022034511408426.10.1177/002203451140842621586666 Search in Google Scholar

62. Yang JW, Zhang YF, Wan CY, Sun ZY, Nie S, Jian SJ, et al. Autophagy in SDF-1α-mediated DPSC migration and pulp regeneration. Biomaterials 2015;44:11-23. doi: 10.1016/j.biomaterials.2014.12.006.10.1016/j.biomaterials.2014.12.00625617122 Search in Google Scholar

63. Liu JY, Chen X, Yue L, Huang GTJ, Zou XY. CXC chemokine receptor 4 is expressed paravascularly in apical papilla and coordinates with stromal cell-derived factor-1α during transmigration of stem cells from apical papilla. J Endod 2015;41(9):1430-6. doi: 10.1016/j.joen.2015.04.006.10.1016/j.joen.2015.04.00626003008 Search in Google Scholar

64. Takeuchi N, Hayashi Y, Murakami M, Alvarez FJ, Horibe H, Iohara K, et al. Similar in vitro effects and pulp regeneration in ectopic tooth transplantation by basic fibroblast growth factor and granulocyte-colony stimulating factor. Oral Dis 2015;21(1):113-22. doi: 10.1111/odi.12227.10.1111/odi.1222724495211 Search in Google Scholar

65. Kim JY, Xin X, Moioli EK, Chung J, Lee CH, Chen M, et al. Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng Part A 2010;16(10):3023-31. doi: 10.1089/ten.TEA.2010.0181.10.1089/ten.tea.2010.0181 Search in Google Scholar

66. Galler KM, Widbiller M. Perspectives for cell-homing approaches to engineer dental pulp. J Endod 2017;43(9S):S40-5. doi: 10.1016/j. joen.2017.06.008. Search in Google Scholar

67. Diogenes A, Hargreaves KM. Microbial modulation of stem cells and future directions in regenerative endodontics. J Endod 2017;43(9S):S95-101. doi: 10.1016/j.joen.2017.07.012.10.1016/j.joen.2017.07.01228844309 Search in Google Scholar

68. Yen AHH, Sharpe PT. Stem cells and tooth tissue engineering. Cell Tissue Res 2008;331(1):359-72. doi: 10.1007/s00441-007-0467-6.10.1007/s00441-007-0467-617938970 Search in Google Scholar

69. Duncan HF, Smith AJ, Fleming GJP, Cooper PR. Epigenetic modulation of dental pulp stem cells: implications for regenerative endodontics. Int Endod J 2016;49(5):431-46. doi: 10.1111/iej.12475.10.1111/iej.1247526011759 Search in Google Scholar

70. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000;97(25):13625-30. doi: 10.1073/pnas.240309797.10.1073/pnas.2403097971762611087820 Search in Google Scholar

71. Hosoya A, Nakamura H. Ability of stem and progenitor cells in the dental pulp to form hard tissue. Jpn Dent Sci Rev 2015;51(3):75-83. doi: 10.1016/j. jdsr.2015.03.002. Search in Google Scholar

72. Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M, et al. The development of a bioengineered organ germ method. Nat Methods 2007;4(3):227-30. doi: 10.1038/nmeth1012.10.1038/nmeth101217322892 Search in Google Scholar

73. Arora V, Arora P, Munshi AK. Banking stem cells from human exfoliated deciduous teeth (SHED): saving for the future. J Clin Pediatr Dent 2009;33(4):289-94. doi: 10.17796/jcpd.33.4.y887672r0j703654.10.17796/jcpd.33.4.y887672r0j70365419725233 Search in Google Scholar

74. Casagrande L, Cordeiro MM, Nör SA, Nör JE. Dental pulp stem cells in regenerative dentistry. Odontology 2011;99(1):1-7. doi: 10.1007/s10266-010-0154-z.10.1007/s10266-010-0154-z21271319 Search in Google Scholar

75. Hilkens P, Bronckaers A, Ratajczak J, Gervois P, Wolfs E, Lambrichts I. The angiogenic potential of DPSCs and SCAPs in an in vivo model of dental pulp regeneration. Stem Cells Int 2017;2017:2582080. doi: 10.1155/2017/2582080.10.1155/2017/2582080560579829018483 Search in Google Scholar

76. Ruangsawasdi N, Zehnder M, Patcas R, Ghayor C, Weber FE. Regenerative dentistry: animal model for regenerative endodontology. Transfus Med Hemother 2016;43(5):359-64. doi: 10.1159/000447644.10.1159/000447644507948227790081 Search in Google Scholar

77. Aksel H, Serper A. Recent considerations in regenerative endodontic treatment approaches. J Dent Sci 2014;9(3):207-13. doi: 10.1016/j. jds.2013.12.007. Search in Google Scholar

78. Diogenes A, Ruparel NB, Shiloah Y, Hargreaves KM. Regenerative endodontics: A way forward. J Am Dent Assoc 2016;147(5):372-80. doi: 10.1016/j. adaj.2016.01.009. Search in Google Scholar

79. Hargreaves KM, Diogenes A, Teixeira FB. Treatment options: biological basis of regenerative endodontic procedures. J Endod 2013;39(3 Suppl):S30-43. doi: 10.1016/j.joen.2012.11.025.10.1016/j.joen.2012.11.025358979923439043 Search in Google Scholar

80. Chrepa V, Pitcher B, Henry MA, Diogenes A. Survival of the apical papilla and its resident stem cells in a case of advanced pulpal necrosis and apical periodontitis. J Endod 2017;43(4):561-7. doi: 10.1016/j.joen.2016.09.024.10.1016/j.joen.2016.09.02428190588 Search in Google Scholar

81. Wang Y, Zhu X, Zhang C. Pulp revascularization on permanent teeth with open apices in a middle-aged patient. J Endod 2015;41(9):1571-5. doi: 10.1016/j.joen.2015.04.022.10.1016/j.joen.2015.04.02226071100 Search in Google Scholar

82. Yoo YJ, Oh JH, Lee W, Woo KM. Regenerative characteristics of apical papilla-derived cells from immature teeth with pulpal and periapical pathosis. J Endod 2016;42(11):1626-32. doi: 10.1016/j.joen.2016.08.004.10.1016/j.joen.2016.08.00427639638 Search in Google Scholar

83. Ring KC, Murray PE, Namerow KN, Kuttler S, Garcia-Godoy F. The comparison of the effect of endodontic irrigation on cell adherence to root canal dentin. J Endod 2008;34(12):1474-9. doi: 10.1016/j.joen.2008.09.001.10.1016/j.joen.2008.09.00119026877 Search in Google Scholar

84. Ruparel NB, Teixeira FB, Ferraz CC, Diogenes A. Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. J Endod 2012;38(10):1372-5. doi: 10.1016/j.joen.2012.06.018.10.1016/j.joen.2012.06.01822980180 Search in Google Scholar

85. Wongwatanasanti N, Jantarat J, Sritanaudomchai H, Hargreaves KM. Efect of bioceramic materials on proliferation and odontoblast differentiation of human stem cells from the apical papilla. J Endod 2018;44(8):1270-5. doi: 10.1016/j.joen.2018.03.014.10.1016/j.joen.2018.03.01429935871 Search in Google Scholar

86. Dammaschke T, Nowicka A, Lipski M, Ricucci D. Histological evaluation of hard tissue formation after direct pulp capping with a fast-setting mineral trioxide aggregate (RetroMTA) in humans. Clin Oral Investig 2019;23(12):4289-99. doi: 10.1007/s00784-019-02876-2.10.1007/s00784-019-02876-230864114 Search in Google Scholar

87. Kawamura R, Hayashi Y, Murakami H, Nakashima M. EDTA soluble chemical components and the conditioned medium from mobilized dental pulp stem cells contain an inductive microenvironment, promoting cell proliferation, migration, and odontoblastic differentiation. Stem Cell Res Ther 2016;7(1):77. doi: 10.1186/s13287-016-0334-z.10.1186/s13287-016-0334-z493759227387974 Search in Google Scholar

88. Fagogeni I, Metlerska J, Lipski M, Falgowski T, Górski M, Nowicka A. Materials used in regenerative endodontic procedures and their impact on tooth discoloration. J Oral Sci 2019;61(3):379-85. doi: 10.2334/josnusd.18-0467.10.2334/josnusd.18-046731378754 Search in Google Scholar

89. Możyńska J, Metlerski M, Lipski M, Nowicka A. Tooth discoloration induced by different calcium silicate-based cements: a systematic review of in vitro studies. J Endod 2017;43(10):1593-601. doi: 10.1016/j.joen.2017.04.002.10.1016/j.joen.2017.04.00228864217 Search in Google Scholar

90. Dusseiller MR, Schlaepfer D, Koch M, Kroschewski R, Textor M. An inverted micro-contact printing method on topographically structured polysty-rene chips for arrayed micro-3-D culturing of single cells. Biomaterials 2005;26(29):5917-25. doi: 10.1016/j.biomaterials.2005.02.032.10.1016/j.biomaterials.2005.02.03215949557 Search in Google Scholar

91. Collado-González M, Pecci-Lloret MP, García-Bernal D, Aznar-Cervantes S, Oñate-Sánchez RE, Moraleda JM, et al. Biological effects of silk fibroin 3D scaffolds on stem cells from human exfoliated deciduous teeth (SHEDs). Odontology 2018;106(2):125-34. doi: 10.1007/s10266-017-0310-9.10.1007/s10266-017-0310-928616672 Search in Google Scholar

92. Xuan K, Li B, Guo H, Sun W, Kou X, He X, et al. Decidous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Sci Trans Med 2018;10(455):eaaf3227. doi: 10.1126/scitransmed.aaf3227. Search in Google Scholar

93. Meza G, Urrejola D, Saint Jean N, Inostroza C, López V, Khoury M, et al. Personalized cell therapy for pulpitis using autologous dental pulp stem cells and leucocyte platelet-rich fibrin: a case report. J Endod 2019;45(2):144-9. doi: 10.1016/j.joen.2018.11.009.10.1016/j.joen.2018.11.00930711169 Search in Google Scholar

eISSN:
2719-6313
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Basic Medical Science, other, Clinical Medicine, Surgery, Public Health