À propos de cet article

Citez

Allmendinger, R.W., Siron, C.R., Scott, C.P., 2017. Structural data collection with mobile devices: Accuracy, redundancy, and best practices. Journal of Structural Geology 102, 98–112. Search in Google Scholar

Bartolini, S., Cappello, A., Martí, J., Del Negro, C., 2013. QVAST: a new Quantum GIS plugin for estimating volcanic susceptibility. In: Nat. Hazards Earth Syst. Sci., pp. 3031–3042. Search in Google Scholar

Bichler, M., Reitner, J.M., Lotter, M., Schiber, A., Palzer-Khomenko, M., 2018. Eine gleiche Terminologie im Quartär und bei Massenbewegungen, in: Arbeitstagung „Angewandte Geowissenschaften an der GBA“,. Angewandte Geowissenschaften an der GBA, Bad Ischl, Hallstatt, Gmunden. Search in Google Scholar

Briner, A.P., Kronenberg, H., Mazurek, M., Horn, H., Engi, M., Peters, T., 1999. FieldBook and GeoDatabase: tools for field data acquisition and analysis. Computers & Geosciences 25, 1101–1111. Search in Google Scholar

Brodaric, B., 2004. The design of GSC FieldLog: Ontology-based software for computer aided geological field mapping. Computers & Geosciences 30, 5–20. Search in Google Scholar

Clegg, P., Bruciatelli, L., Domingos, F., Jones, R.R., Donatis, M. de, Wilson, R.W., 2006. Digital geological mapping with tablet PC and PDA: A comparison. Computers & Geosciences 32, 1682–1698. Search in Google Scholar

Compton, R.R. (Ed.), 1962. Manual of field geology. J. Wiley & Sons, New York, Toronto, 378 pp. Search in Google Scholar

Dey, S., Ghosh, P., 2008. GRDM—A digital field-mapping tool for management and analysis of field geological data. Computers & Geosciences 34, 464–478. Search in Google Scholar

Erharter, G., 2018. Geological Maps with QGIS 3.X. https://www.researchgate.net/publication/325812357_Geological_Maps_with_QGIS_3X. Accessed 13 December 2022. Search in Google Scholar

Erharter, G.H., Palzer-Khomenko, M., 2018. DiGeo: Introduction and a new tutorial to geological maps with QGIS 3.X. Austrian Journal of Earth Sciences, 111, 223–224. Search in Google Scholar

Fang, Z., Jiang, G., Xu, C., Wang, S., 2020. A tectonic geodesy mapping software based on QGIS. Geodesy and Geodynamics, 11, 31–39. Search in Google Scholar

Gandhi, U., 2023. QGIS Tutorials and Tips. https://www.qgistutorials.com/en/index.html#. Accessed 24 August 2023. Search in Google Scholar

Gruber, A., Henrich, R., Lotter, M., 2022. GK Blatt 114 Holzgau 1:50.000. Geologische Bundesanstalt, Wien. Search in Google Scholar

Horner, J., Naranjo, A., Weil, J., 2016. Digital data acquisition and 3D structural modelling for mining and civil engineering - the La Colosa gold mining project, Colombia. Geomechanik und Tunnelbau, 9, 52–57. Search in Google Scholar

Lemenkova, P., 2020. Python libraries matplotlib, seaborn and pandas for visualization geospatial datasets generated by QGIS. Scientific Annals of “Alexandru Ioan Cuza” University of Iasi - Geography Series 64. Search in Google Scholar

Li, Z., Zhu, Q., Gold, C., 2005. Digital terrain modeling: Principles and methodology. CRC Press, New York, xvi, 323. Search in Google Scholar

Lorscheid, T., 2013. Anleitung zur Erstellung einer geologischen Karte mit QGIS 2.0. Steinmann Institut - Universität Bonn. https://www.steinmann.uni-bonn.de/studium-geowissenschaften/outdoor/nachbereitung/protokoll/gesamtanleitung-qgis-2.pdf. Accessed 23 October 2018. Search in Google Scholar

Miller, C.L., Laflamme, R.A., 1958. The Digital Terrain Model: Theory & Application. Photogrammetric Engineering, 433–442. Search in Google Scholar

Mohsen Alshaghdari, 2017. Geological mapping using open source QGIS. https://www.researchgate.net/publication/320163676_Geological_mapping_using_open_source_QGIS. Accessed 23 October 2018. Search in Google Scholar

Muenchow, J., Schratz, P., Brenning, A., 2017. RQGIS: Integrating R with QGIS for Statistical Geocomputing. The R Journal, 9, 409. Search in Google Scholar

Muir, R.J., Vaughan, A.P.M., 2017. Digital Mapping and Three-Dimensional Model Building of the Ben Nevis Igneous Complex, Southwest Highlands, Scotland: New Insights into the Emplacement and Preservation of Postorogenic Magmatism. The Journal of Geology, 125, 607–636. Search in Google Scholar

Penasa, L., Frigeri, A., Pozzobon, R., Brandt, C.H., Toffoli, B. de, Naß, A., Rossi, A.P., Massironi, M., 2020. Constructing and deconstructing geological maps: a QGIS plugin for creating topologically consistent geological cartography, in: EPSC Abstracts. Europlanet Science Congress 2020. Search in Google Scholar

QGIS Development Team, 2023. QGIS Geographic Information System. QGIS Association. http://www.qgis.org. Accessed 17 January 2023. Search in Google Scholar

Strasky, S., Baland, P., Michael, C.S., Oesterling, N., 2012. Datenmodell Geologie: Beschreibung im UML-Format und Objektkatalog, Version 2.1, 151 pp. Search in Google Scholar

Titti, G., Sarretta, A., Lombardo, L., Crema, S., Pasuto, A., Borgatti, L., 2022. Mapping Susceptibility With Open-Source Tools: A New Plugin for QGIS. Front. Earth Sci. 10. Search in Google Scholar

Tobler, W.R., 1959. Automation and Cartography. Geographical Review, 49, 526. Search in Google Scholar

UC Riverside. Teaching Undergraduate Students. https://geopad.ucr.edu/teaching/undergraduate-students. Accessed 10 September 2023. Search in Google Scholar

University of Innsbruck, 2019. Curriculum for the Master’s Programme Earth Science at the Faculty of Earth and Atmospheric Sciences of the University of Innsbruck. https://www.uibk.ac.at/fakultaeten-servicestelle/pruefungsreferate/studienplaene/english-version/ma-erdwissenschaften_01.10.2019_en.pdf. Accessed 10 September 2023. Search in Google Scholar

University of Vienna, 2020. Curriculum für das Masterstudium Erdwissenschaften (Version 2020). https://senat.univie.ac.at/fileadmin/user_upload/s_senat/konsolidierte_Masterstudien/MA_Erdwissenschaften_Version2020.pdf. Accessed 10 September 2023. Search in Google Scholar

eISSN:
2072-7151
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Geosciences, Geophysics, Geology and Mineralogy, other