Accès libre

Organic geochemistry and petrography of Miocene ombrotrophic coals in the tropical Asem-Asem Basin (Kalimantan, Indonesia): Comparison to coeval subtropical coals in the Eastern Alps

À propos de cet article

Citez

Achmad, A., 2018. Key of Meratus Complex Uplift: Sedimentological approachment of Ophiolitic Fragments within Warukin Sandstones in Asem - Asem Basin. Proceedings Pekan Ilmiah Tahunan IAGI, 28th Oct-1st Nov, 2018. Search in Google Scholar

Adaskaveg, J.E., Blanchette, R.A., Gilbertson, R.L., 1991. Decay of date palm wood by white-rot and brown rot fungi. Canadian Journal of Botany, 69/3, 615–629. https://doi.org/10.1139/b91-083 Search in Google Scholar

Advokaat, E. L., Marshall, N.T., Li, S., Spakman, W., Krijgsman, W., van Hinsbergen, D. J., 2018. Cenozoic rotation history of Borneo and Sundaland, SE Asia revealed by paleomagnetism, seismic tomography, and kinematic reconstruction. Tectonics, 37/8, 2486–2512. https://doi.org/10.1029/2018TC005010 Search in Google Scholar

Anderson, J.A.R., 1963. The flora of the peat swamp forests of Sarawak and Brunei, including a catalogue of all recorded species of flowering plants, ferns and fern allies. The Gardens´ Bulletin, Singapore, 20/2, 131–238. Search in Google Scholar

Anderson, J.A.R., 1964. The structure and development of the peat swamps of Sarawak and Brunei. Journal of Tropical Geography, 18, 7–16. Search in Google Scholar

Anderson, J.A.R., Muller, J., 1975. Palynological study of a Holocene peat and a Miocene coal deposit from N.W. Borneo. Review of Palaeobotany and Palynology, 19/4, 291–351. https://doi.org/10.1016/0034-6667(75)90049-4 Search in Google Scholar

Arutmin, 2015. Internal report on coal mining development of PT Arutmin Indonesia 2015–2020). PT Arutmin Indonesia, Jakarta, 441 pp. (in Indonesian). Search in Google Scholar

Arya, G.C., Sarkar, S., Manasherova, E., Aharoni, A., Cohen, H., 2021. The Plant Cuticle: An Ancient Guardian Barrier Set Against Long-Standing Rivals. Frontiers in Plant Science, 12, 663165. https://doi.org/10.3389/fpls.2021.663165 Search in Google Scholar

ASTM, 2012. D3174-2012. Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal, 6 pp. Search in Google Scholar

ASTM, 2017. D3173-2017. Standard Test Method for Moisture in the Analysis Sample of Coal and Coke, 4 pp. Search in Google Scholar

Bechtel, A., Gruber, W., Sachsenhofer, R.F., Gratzer, R., Püttmann, W., 2001. Organic geochemical and stable carbon isotopic investigation of coals formed in low-lying and raised mires within the Eastern Alps (Austria). Organic Geochemistry, 32/11, 1289–1310. https://doi.org/10.1016/S0146-6380(01)00101-2 Search in Google Scholar

Bechtel, A., Gruber, W., Sachsenhofer, R.F., Gratzer, R., Püttmann, W., 2003a. Depositional environment of the Late Miocene Hausruck lignite (Alpine Foreland Basin): Insights from petrography, organic geochemistry, and stable carbon isotopes. International Journal of Coal Geology, 53, 153–180. https://doi.org/10.1016/S0166-5162(02)00194-5 Search in Google Scholar

Bechtel, A., Sachsenhofer, R.F., Markic, M., Gratzer, R., Lucke, A., Pütt-mann, W., 2003b. Paleoenvironmental implications from biomarker and stable isotope investigations on the Pliocene Velenje lignite seam (Slovenia). Organic Geochemistry, 34/9, 1277–1298. https://doi.org/10.1016/S0146-6380(03)00114-1 Search in Google Scholar

Bechtel, A., Reischenbacher, D., Sachsenhofer, R.F., Gratzer, R., Lücke, A., Püttmann, W., 2007. Relations of petrographical and geochemical parameters in the middle Miocene Lavanttal lignite (Austria). International Journal of Coal Geology, 70/4, 325–349. https://doi.org/10.1016/j.coal.2006.07.002 Search in Google Scholar

Bechtel, A., Gratzer, R., Sachsenhofer, R.F., Gusterhuber, J., Lücke, A., Püttmann, W., 2008. Biomarker and carbon isotope variation in coal and fossil wood of Central Europe through the Cenozoic. Palaeo-geography, Palaeoclimatology, Palaeoecology, 262/3–4, 166–175. https://doi.org/10.1016/j.palaeo.2008.03.005 Search in Google Scholar

Bourbonniere, R.A., Meyers, P.A., 1996. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnology and Oceanography, 41/2, 352–359. https://doi.org/10.4319/lo.1996.41.2.0352 Search in Google Scholar

BP, 2022. bp Statistical Review of World Energy 2022, 71st edition. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf (accessed on 23 April 2023) Search in Google Scholar

Bray, E.E., Evans, E.D., 1961. Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta, 22/1, 2–5. https://doi.org/10.1016/0016-7037(61)90069-2 Search in Google Scholar

Brooks, J.D., Gould, K ., Smith, J.W., 1969. Isoprenoid Hydrocarbons in Coal and Petroleum. Nature, 222, 257–259. https://doi.org/10.1038/222257a0 Search in Google Scholar

Buggle, B., Wiesenberg, G.L., Glaser, B., 2010. Is there a possibility to correct fossil n-alkane data for postsedimentary alteration effects? Applied Geochemistry, 25/7, 947–957. https://doi.org/10.1016/j.apgeochem.2010.04.003 Search in Google Scholar

Bumi Resources, 2021. Annual Report 2021. http://www.bumiresources.com/index.php/en/investor-relations#report (accessed on 01 January 2023). Search in Google Scholar

Calder, J., Gibling, M., Mukhopadhyay, P.K., 1991. Peat formation in a Westphalian B piedmont setting, Cumberland Basin, Nova Scotia: implications for the maceral-based interpretation of rheotrophic and raised paleomires. Bulletin Societe Geologique de France, 162/2, 283–298. Search in Google Scholar

Cameron, C.C., Esterle, J.S., Palmer, C.A., 1989. The geology, botany and chemistry of selected peat-forming environments from temperate and tropical latitudes. International Journal of Coal Geology, 12/1–4, 105–156. https://doi.org/10.1016/0166-5162(89)90049-9 Search in Google Scholar

Casagrande, D.J., 1987. Sulphur in peat and coal. Geological Society, London, Special Publications, 32/1, pp. 87–105. https://doi.org/10.1144/GSL.SP.1987.032.01.07 Search in Google Scholar

Dai, S., Bechtel, A., Eble, C.F., Flores, R.M., French, D., Graham, I.T., Hood, M.M., Hower, J.C., Korasidis, V.A., Moore, T.A., Püttman, W., Wei, Q., Zhao, L., O’Keefe, J.M.K., 2020. Recognition of peat depositional environments in coal: A review. International Journal of Coal Geology, 219, 103383. https://doi.org/10.1016/j.coal.2019.103383 Search in Google Scholar

Dehmer, J., 1993. Petrology and organic geochemistry of peat samples from a raised bog in Kalimantan (Borneo). Organic Geochemistry, 20/3, 349–362. https://doi.org/10.1016/0146-6380(93)90125-U Search in Google Scholar

Demchuk, T., Moore, T.A., 1993. Palynofloral and organic characteristics of a Miocene bog-forest, Kalimantan, Indonesia. Organic Geochemistry, 20/2, 119–134. https://doi.org/10.1016/0146-6380(93)90032-7 Search in Google Scholar

Didyk, B.M., Simoneit, B.R.T., Brassell, S.T., Eglinton, G., 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272, 216–222. https://doi.org/10.1038/272216a0 Search in Google Scholar

Diessel, C.F.K., 1986. The correlation between coal facies and depositional environments. Proceedings of the 20th Symposium of Department Geology, University of New Castle, New South Wales, pp. 11–22. Search in Google Scholar

Ding, L.-F., Liu, J.-X., Xie, Z.-Q., Wang, S.S., Nie, W., Song, L.-D., Wu, X.-D., Zhao, Q.-S., 2019. Magnograndins J-M, elemane sesquiterpenoids from the leaves of Magnolia grandiflora and their inhibitory effects on nitric oxide production. Phytochemistry Letters 31, 121–124. https://doi.org/10.1016/j.phytol.2019.03.021 Search in Google Scholar

Espitalie, J., Madec, M., Tissot, B., Mennig, J.J., Leplat, P., 1977. Source Rock Characterization Method for Petroleum Exploration. Offshore Technology Conference. https://doi.org/10.4043/2935-MS Search in Google Scholar

Esterle, J.S., Ferm, J.C., 1994. Spatial variability in modern tropical peat deposits from Sarawak, Malaysia and Sumatra, Indonesia: analogues for coal. International Journal of Coal Geology, 26/1–2, 1–41. https://doi.org/10.1016/0166-5162(94)90030-2 Search in Google Scholar

Esterle, J.S., Ferm, J.C., Tie, Y.L., 1989. A test for the analogy of tropical domed peat deposits to “dulling-up” sequences in coal beds-preliminary results. Organic Geochemistry, 14/3, 333–342. https://doi.org/10.1016/0146-6380(89)90060-0 Search in Google Scholar

Ettingshausen, C., 1888. Die fossile Flora von Leoben in Steiermark. 1., 2. Theil. - Denkschriften kaiserliche Akademie der Wissenschaften. mathematisch-naturwissenschaftliche Classe, 54, 261–318, 319–384. https://doi.org/10.5962/bhl.title.118927 Search in Google Scholar

Ficken, K.J., Li, B., Swain, D., Eglinton, G., 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 31/7–8, 745–749. https://doi.org/10.1016/S0146-6380(00)00081–4 Search in Google Scholar

Figueiral, I., Mosbrugger, V., Rowe, N.P., Ashraf, A.R., Utescher, T., Jones, T.P., 1999. The Miocene peat-forming vegetation of northwestern Germany: an analysis of wood remains and comparison with previous palynological interpretations. Review of Palaeobotany and Palynology, 104/3–4, 239–266. https://doi.org/10.1016/S0034-6667(98)00059-1 Search in Google Scholar

Fikri, H.N., Sachsenhofer, R.F., Bechtel, A., Gross, D., 2022a. Organic geochemistry and petrography in Miocene coals in the Barito Basin (Tutupan Mine, Indonesia): Evidence for astronomic forcing in kerapah type peats. International Journal of Coal Geology, 256, 103997. https://doi.org/10.1016/j.coal.2022.103997 Search in Google Scholar

Fikri, H.N., Sachsenhofer, R.F., Bechtel, A., Gross, D., 2022b. Coal deposition in the Barito Basin (Southeast Borneo): The Eocene Tanjung Formation compared to the Miocene Warukin Formation. International Journal of Coal Geology, 263, 104117. https://doi.org/10.1016/j.coal.2022.104117 Search in Google Scholar

Friederich, M.C., Moore, T.A., Flores, R.M., 2016. A regional review and new insights into SE Asian Cenozoic coal-bearing sediments: why does Indonesia have such extensive coal deposits? International Journal of Coal Geology, 166, 2–35. https://doi.org/10.1016/j.coal.2016.06.013 Search in Google Scholar

Gruber, W., Sachsenhofer, R.F., 2001. Coal deposition in the Noric Depression (Eastern Alps): raised and low-lying mires in Miocene pull-apart basins. International Journal of Coal Geology, 48/1–2, 89–114. https://doi.org/10.1016/S0166-5162(01)00049-0 Search in Google Scholar

Hall, R., 2012. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570–571, 1–41. https://doi.org/10.1016/j.tecto.2012.04.021 Search in Google Scholar

Hall, R., Morley, C.K., 2004. Sundaland basins. In: Clift, P., Wang, P., Kuhnt, W., Hayes, D.E. (eds.), Continent-Ocean Interactions within the East Asian Marginal Seas. Geophysical Monograph Series, 149, American Geophysical Union, Washington, D.C., 55–85. https://doi.org/10.1029/149GM04 Search in Google Scholar

Hauke, V., Graff, R., Wehrung, P., Trendel, J.M., Albrecht, P., Riva, A., Hopfgartner, G., Gülaçar, F.O., Buchs, A., Eakin, P.A., 1992. Novel triterpene-derived hydrocarbons of the arborane/fernane series in sediments: Part II. Geochimica et Cosmochimica Acta, 56/9, 3595–3602. https://doi.org/10.1016/0016-7037(92)90405-8 Search in Google Scholar

Hower, J.C., O’Keefe, J.M., Eble, C.F., Raymond, A., Valentim, B., Volk, T.J., Richardson, A.R., Satterwhite, A.B., Hatch, R.S., Stucker, J.D., Watt, M.A., 2011a. Notes on the origin of inertinite macerals in coal: evidence for fungal and arthropod transformations of degraded macerals. International Journal of Coal Geology, 86/2–3, 231–240. https://doi.org/10.1016/j.coal.2011.02.005 Search in Google Scholar

Hower, J.C., O’Keefe, J.M., Eble, C.F., Volk, T.J., Richardson, A.R., Satter-white, A.B., Hatch, R.S., Kostova, I.J., 2011b. Notes on the origin of inertinite macerals in coals: Funginite associations with cutinite and suberinite. International Journal of Coal Geology; 85/1, 186–190. https://doi.org/10.1016/j.coal.2010.11.008 Search in Google Scholar

Hutchison, C.S., 1989. Geological evolution of South-East Asia, Oxford Monographs on Geology and Geophysics, 13. Oxford University Press, Oxford, 368 pp. Search in Google Scholar

Hutchison, C.S., 2014. Tectonic evolution of Southeast Asia. Geological Society of Malaysia Bulletin, 60, 1–18. https://doi.org/10.7186/bgsm60201401 Search in Google Scholar

ICCP (International Committee for Coal and Organic Petrology), 1998. The new vitrinite classification (ICCP System 1994). Fuel, 77/5, 349–358. https://doi.org/10.1016/S0016-2361(98)80024-0 Search in Google Scholar

ICCP (International Committee for Coal and Organic Petrology), 2001. The new inertinite classification (ICCP System 1994). Fuel, 80/4, 459–471. https://doi.org/10.1016/S0016-2361(00)00102-2 Search in Google Scholar

IEA, 2022. World Energy Outlook 2002. International Energy Agency. https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf (accessed on 09 February 2023) Search in Google Scholar

Jiménez-Moreno, G., Fauquette, S., Suc, J.-P., 2008. Vegetation, climate and palaeoaltitude reconstructions of the Eastern Alps during the Miocene based on pollen records from Austria, Central Europe. Journal of Biogeography, 35/9, 1638–1649. https://doi.org/10.1111/j.1365-2699.2008.01911.x Search in Google Scholar

Korasidis, V.A., Wallace, M.W., Wagstaff, B.E., Holdgate, G.R., Tosolini, A.-M.P., Jansen, B., 2016. Cyclic floral succession and fire in a Cenozoic wetland/peatland system. Palaeogeography, Palaeoclimatology, Palaeoecology, 461, 237–252. https://doi.org/10.1016/j.palaeo.2016.08.030 Search in Google Scholar

Kovar-Eder, J., Kcacek, Z., Teodoridis, V., Mazouch, P., Collinson, M.E., 2022. Floristic, vegetation and climate assessment of the early/middle Miocene Parschlug flora indicates a distinctly seasonal climate. Fossil Imprint, 78/1, 80–144. https://doi.org/10.37520/fi.2022.005 Search in Google Scholar

Markic, M., Sachsenhofer, R.F., 1997. Petrographic composition and depositional environments of the Pliocene Velenje lignite seam (Slovenia). International Journal of Coal Geology, 33/3, 229–254. https://doi.org/10.1016/S0166-5162(96)00043-2 Search in Google Scholar

Moore, T.A., Shearer, J.C., 1997. Evidence for aerobic degradation and implications for Palangka Raya peat sustainability. In: Rieley, J.O., Page, S.E. (eds.), Biodiversity and Sustainability of Tropical Peat-lands. Samara Publishing, Cardigan, United Kingdom, 157–167. Search in Google Scholar

Moore, T.A., Shearer, J.C., 2003. Peat/coal type and depositional environment - are they related? International Journal of Coal Geology, 56/3–4, 233–252. https://doi.org/10.1016/S0166-5162(03)00114-9 Search in Google Scholar

Moore, T.A., Shearer, J.C., Miller, S.L., 1996. Fungal origin of oxidised plant material in the Palangkaraya peat deposit, Kalimantan Tengah, Indonesia: Implications for ‘inertinite’ formation in coal. International Journal of Coal Geology, 30/1–2, 1–23. https://doi.org/10.1016/0166-5162(95)00040-2 Search in Google Scholar

Morley, R.J., 2012. A review of the Cenozoic climate history of Southeast Asia. In: Gower, D., Johnson, K., Richardson, J., Rosen, B., Rüber, L., Williams, S. (eds.), Biotic Evolution and Environmental Change in Southeast Asia. Cambridge University Press, Cambridge, 79–114. https://doi.org/10.1017/CBO9780511735882.006 Search in Google Scholar

Morley, R.J., 2013. Cenozoic ecological history of South East Asian peat mires based on the comparison of coals with present day and Late Quaternary peats. Journal of Limnology, 72/S2, 36–59. https://doi.org/10.4081/jlimnol.2013.s2.e3 Search in Google Scholar

Naafs, B.D.A., Inglis, G.N., Blewett, J., McClymont, E.L., Lauretano, V., Xie, S., Evershed, R.P., Pancost, R.D., 2019. The potential of biomarker proxies to trace climate, vegetation, and biogeochemical processes in peat: A review. Global and Planetary Change, 179, 57–79. https://doi.org/10.1016/j.gloplacha.2019.05.006 Search in Google Scholar

Otto, A., Wilde, V., 2001. Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers - A Review. The Botanical Review, 67/2, 141–238. Search in Google Scholar

Page, S., Rieley, J.O., Shotyk, O.W., Weiss, D., 1999. Interdependence of peat and vegetation in a tropical peat swamp forest. Philosophical Transactions of The Royal Society B - Biological Sciences, 354/1391, 1885–1897. https://doi.org/10.1098/rstb.1999.0529 Search in Google Scholar

Page, S., Wüst, R., Banks, C., 2010. Past and present carbon accumulation and loss in Southeast Asian peatlands. PAGES News, 18/1, 25–27. https://doi.org/10.22498/pages.18.1.25 Search in Google Scholar

Parr, S.W., 1928. The Classification of Coal. University of Illinois, Engineering Experiment Station, Bulletin, 180, 1–62. Search in Google Scholar

Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633–1644. https://doi.org/10.5194/hess-11-1633–2007 Search in Google Scholar

Peters, K.E., Moldowan, J. M., 1993. The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments. 363 pp. Search in Google Scholar

Pickel, W., Kus, J., Flores, D., Kalaitzidis, S., Christanis, K., Cardott, B.J., Misz-Kennan, M., Rodrigues, S., Hentschel, A., Hamor-Vido, M., Cros-dale, P., Wagner, N., 2017. Classification of liptinite - ICCP System 1994. International Journal of Coal Geology, 169, 40–61. https://doi.org/10.1016/j.coal.2016.11.004 Search in Google Scholar

Powell, T.G., McKirdy, D.M., 1973. Relationship between ratio of pristane to phytane, crude oil composition and geological environment in Australia. Nature Physical Science, 243, 37–39. https://doi.org/10.1038/physci243037a0 Search in Google Scholar

Poynter, J., Eglinton, G., 1990. Molecular composition of three sediments from Hole 717C: the Bengal Fan. In: Cochran, J.R., Stow, D.A.V., et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 116, 155–161. https://doi.org/10.2973/odp.proc.sr.116.151.1990 Search in Google Scholar

Pubellier, M., Morley, C.K., 2014. The basins of Sundaland (SE Asia): Evolution and boundary conditions. Marine and Petroleum Geology, 58/Part B, 555–578. https://doi.org/10.1016/j.marpetgeo.2013.11.019 Search in Google Scholar

Radke, M., Schaefer, R.G., Leythaeuser, D., Teichmüller, M., 1980. Composition of soluble organic matter in coals: relation to rank and liptinite fluorescence. Geochimica et Cosmochimica Acta, 44/11, 1787–1800. https://doi.org/10.1016/0016-7037(80)90228-8 Search in Google Scholar

Sachsenhofer, R.F., 2000. Geodynamic controls on deposition and maturation of coal in the Eastern Alps. In: F. Neubauer, V. Höck (eds.), Aspects of Geology in Austria, Mitteilungen der Österreichischen Geologischen Gessellschaft, 92, 185–194. Search in Google Scholar

Sachsenhofer, R.F., Bechtel A., Reischenbacher D., Weiss A., 2003. Evolution of lacustrine systems along the Miocene Mur-Mürz fault system (Eastern Alps) and implications on source rocks in pull-apart basins. Marine and Petroleum Geology, 20/2, 83–110. https://doi.org/10.1016/S0264-8172(03)00018-7 Search in Google Scholar

Sapiie, B., Rifiyanto, A., 2017. Tectonics and Geological Factors Controlling Cleat Development in the Barito Basin, Indonesia. Journal of Engineering & Technological Sciences, 49/3, 322–339. https://doi.org/10.5614/j.eng.technol.sci.2017.49.3.3 Search in Google Scholar

Satyana, A.H., Nugroho, D., Surantoko, I., 1999. Tectonic controls on the hydrocarbon habitats of the Barito, Kutei, and Tarakan Basins, Eastern Kalimantan, Indonesia: major dissimilarities in adjoining basins. Journal of Asian Earth Sciences, 17/1–2, 99–122. https://doi.org/10.1016/S0743-9547(98)00059-2 Search in Google Scholar

Schwark, L., Zink, K., Lechterbeck, J., 2002. Reconstruction of post-glacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments. Geology, 30/5, 463–466. https://doi.org/10.1130/0091-7613(2002)030<0463:ROPTEH>2.0.CO;2 Search in Google Scholar

Scotese, C.R., 2000. PALEOMAP Project [DB/OL]. http://www.scotese.com/ (accessed on 03 February 2023). Search in Google Scholar

Stivrins, N., Ozola, I., Galka, M., Kuske, E., Alliksaar, T., Andersen, T.J., Lamentowicz, M., Wulf, S., Reitalu, T., 2017. Drivers of peat accumulation rate in a raised bog: impact of drainage, climate, and local vegetation composition. Mires and Peat, 19, 1–19. https://doi.org/10.19189/MaP.2016.OMB.262 Search in Google Scholar

Stock, A.T., Littke, R., Lücke, A., Zieger, L., Thielemann, T., 2016. Miocene depositional environment and climate in western Europe: The lignite deposits of the Lower Rhine Basin, Germany. International Journal of Coal Geology, 157, 2–18. http://dx.doi.org/10.1016/j.coal.2015.06.009 Search in Google Scholar

Taylor, G., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R., Robert, P., 1998. Organic Petrology. Gebrüder Borntraeger, Berlin. 704 pp. Search in Google Scholar

van Aarssen, B.G.K., Cox, H., Hoogendoorn, N.P., de Leeuw, J.W., 1990. A cadinene biopolymer in fossil and extant dammar resins as a source for cadinanes and bicadinanes in crude oils from South East Asia. Geochimica et Cosmochimica Acta, 54/11, 3021–3031. https://doi.org/10.1016/0016-7037(90)90119-6 Search in Google Scholar

van Aarssen, B.G.K. de Leeuw, J.W., Collinson, M., Boon, J.J., Goth, K., 1994. Occurrence of polycadinene in fossil and recent resins. Geochimica et Cosmochimica Acta, 58/1, 223–229. https://doi.org/10.1016/0016-7037(94)90459-6 Search in Google Scholar

Weber L., Weiss A., 1983. Bergbaugeschichte und Geologie der österreichischen Braunkohlevorkommen. Archiv für Lagerstättenforschung der Geologischen Bundesanstalt, 4, 1–217. Search in Google Scholar

Widodo, S., Bechtel, A., Komang, A., Püttmann, W., 2009. Reconstruction of floral changes during deposition of the Miocene Embalut coal from Kutai basin, Mahakam delta, East Kalimantan, Indonesia by use of aromatic hydrocarbon composition and stable carbon isotope ratios of organic matter. Organic Geochemistry, 40/2, 206–218. https://doi.org/10.1016/j.orggeochem.2008.10.008 Search in Google Scholar

Widodo, S., Oschmann, W., Bechtel, A., Sachsenhofer, R.F., Komang, A., Püttmann, W., 2010. Distribution of sulfur and pyrite in coal seams from Kutai Basin (East Kalimantan, Indonesia): Implications for paleoenvironmental conditions. International Journal of Coal Geology, 81/3, 151–162. https://doi.org/10.1016/j.coal.2009.12.003 Search in Google Scholar

Witts, D., Davies, L., Morley, R., 2014. Uplift of the Meratus Complex: Sedimentology, biostratigraphy, provenance and structure. Proceedings Indonesian Petroleum Association 38th Annual Convention & Exhibition, IPA14-G-082 Search in Google Scholar

Witts, D., Hall, R., Nichols, G., Morley, R., 2012. A new depositional and provenance model for the Tanjung Formation, Barito Basin, SE Kalimantan, Indonesia. Journal of Asian Earth Sciences, 56, 77–104. https://doi.org/10.1016/j.jseaes.2012.04.022 Search in Google Scholar

Wüst, R.A.J., Hawke, M.I., Bustin, R.M., 2001. Comparing maceral ratios from tropical peatlands with assumptions from coal studies: do classic coal petrographic interpretation methods have to be discarded? International Journal of Coal Geology, 48/1–2, 115–132. https://doi.org/10.1016/S0166-5162(01)00050-7 Search in Google Scholar

Zahirovic, S., Seton, M., Müller, R.D., 2014. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia. Solid Earth, 5, 227–273. https://doi.org/10.5194/se-5-227-2014 Search in Google Scholar

Zech, M., Buggle, B., Leiber, K., Marković, S., Glaser, B., Hambach, U., Huwe, B., Stevens, T., Sümegi, P., Wiesenberg, G., Zöller, L., 2009. Reconstructing Quaternary vegetation history in the Carpathian Basin, SE-Europe, using n-alkane biomarkers as molecular fossils: Problems and possible solutions, potential and limitations. E&G Quaternary Science Journal, 58/2, 148–155. https://doi.org/10.3285/eg.58.2.03 Search in Google Scholar

eISSN:
2072-7151
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Geosciences, Geophysics, Geology and Mineralogy, other