À propos de cet article
Catégorie d'article: Dedicated to the fifth international conference on Uniform Distribution Theory (UDT 2016) Sopron, Hungary, July 5–8, 2016
Publié en ligne: 22 juil. 2017
Pages: 139 - 153
Reçu: 23 mars 2016
Accepté: 02 août 2016
DOI: https://doi.org/10.1515/udt-2017-0009
Mots clés
© 2017
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
In this article , we show that the set of Mills constants (real numbers M such that [M3ⁿ] is prime for all n ≥ 0) is the increasing limit of sets homeomorphic to the triadic Cantor’s set. More generally, for a given function ϕ and a set A of integers, we studying the Mills set Mϕ(A) = {α ∈ ℝ/ ∀n ∈ ℕ, [ϕn(α)] ∈ A} (where ϕn = ϕ∘...∘ϕ n times). We show that, under certain assumptions over ϕ and A, for all real w > infMϕ(A) the set Mϕ(A) ∩ [2, w] is homeomorphic to the triadic Cantor’s set.