À propos de cet article
Catégorie d'article: Dedicated to the fifth international conference on Uniform Distribution Theory (UDT 2016) Sopron, Hungary, July 5–8, 2016
Publié en ligne: 22 juil. 2017
Pages: 99 - 107
Reçu: 07 mars 2016
Accepté: 17 mars 2016
DOI: https://doi.org/10.1515/udt-2017-0006
Mots clés
© 2017
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
We consider strictly increasing sequences (an)n≥1 of integers and sequences of fractional parts ({anα})n≥1 where α ∈ R. We show that a small additive energy of (an)n≥1 implies that for almost all α the sequence ({anα})n≥1 has large discrepancy. We prove a general result, provide various examples, and show that the converse assertion is not necessarily true.