Accès libre

Spatial Equidistribution of Binomial Coefficients Modulo Prime Powers

 et   
13 janv. 2017
À propos de cet article

Citez
Télécharger la couverture

The spatial distribution of binomial coefficients in residue classes modulo prime powers is studied. It is proved inter alia that empirical distribution of the points (k,m)pm with 0 ≤ kn < pm and (nk)a(modp)s$\left( {\matrix{n \cr k \cr } } \right) \equiv a\left( {\bmod \;p} \right)^s $ (for (a, p) = 1) for m→∞ tends to the Hausdorff measure on the “p-adic Sierpiński gasket”, a fractals studied earlier by von Haeseler, Peitgen, and Skordev.