[
[1] M. Kermani, M. Moallem, R. Patel. Applied Vibration Suppresion Using Piezoelectric Materials, New York: Nova Science Publishers, Inc., 2008, ISBN-13: 978-1-60021-896-5, 176 p.
]Search in Google Scholar
[
[2] J. Erhart. Základy piezoelektřiny pro aplikace, Brno: Ústav automatizace a měřici techniky VUT v Brne, 2011. URL: http://www.crr.vutbr.cz/system/files/brozura_06_1112.pdf
]Search in Google Scholar
[
[3] Ansys Polyflow User’s Guide, https://www.sharcnet.ca/Software/Ansys/16.2.3/en-us/help/poly_pf/poly_pf.html
]Search in Google Scholar
[
[4] A. Erturk, D. J. Inman. Piezoelectric energy harvesting. First edition. Wiley Publication, 2011, 402 p., ISBN: 978-0-470-68254-8.
]Search in Google Scholar
[
[5] K. Tsubouchi, N. Mikoshiba. Zero-Temperature-Coefficient SAW Devices on AlN Epitaxial Films. IEEE Trans. Sonics Ultrason. 1985 (32), No. 5, 634 – 644.
]Search in Google Scholar
[
[6] F. Bernardini, V. Fiorentini, D. Vanderbilt. Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 1997 (56), No. 15-16, R10024(R)
]Search in Google Scholar
[
[7] F. Bernardini, V. Fiorentini. First-principles calculation of the piezoelectric tensor d/sup to or from / of III-V nitrides. Appl. Phys. Lett. 2002 (80), 4145 - 4147
]Search in Google Scholar
[
[8] I. L. Guy, S. Muensit, E. M. Goldys. Extensional piezoelectric coefficients of gallium nitride and aluminum nitride. Appl. Phys. Lett. 1999 (75), 4133 - 4135
]Search in Google Scholar
[
[9] G. Bu, D. Ciplys, M. Shur, L.J. Schowalter, S. Schujman, R. Gaska, Surface acoustic waves in single crystal bulk aluminum nitride, Appl. Phys. Lett. submitted 2003.
]Search in Google Scholar
[
[10] M. Edwards. Material for Robus Gallium Nitride. Additional Report. Remperature Dependent Properties of GaN. University of Bath, 2009, 1 – 7. URL: http://www.morganproject.eu/documents_public/Temp-Dependent%20Properties%20of%20GaN%20&%20Related%20Materials.pdf.
]Search in Google Scholar
[
[11] A. D. Bykhovski, V. V. Kaminski, M. S. Shur, Q. C. Chen, and M. A. Khan, Appl. Phys. Lett. 1996 (68), 818.
]Search in Google Scholar
[
[12] G. D. O’Clock, M. T. Duffy. Acoustic surface wave properties of epitaxially grown aluminum nitride and gallium nitride on sapphire. Appl. Phys. Lett. 1973 (23), No. 2, 55.
]Search in Google Scholar
[
[13] C. Bowen, D. Allsopp, R. Stevens, P. Shields, W. Wang. Modelling and designing GaN piezeoelectric MEMS. In: Second International Conference on Multi-Material Micro Manufacture, Grenoble. 2006.
]Search in Google Scholar
[
[14] J.C. Freeman. Basic Equations for the Modeling of Gallium Nitride (GaN) High Electron Mobility Transistors. 2003, NASA/TM-2003-211983.
]Search in Google Scholar
[
[15] P. Staňák, J. Sládek, V. Sládek. Analysis of piezoelectric semiconducting solids by meshless method, Journal of Mechanical Engineering - Strojnícky časopis 2015 (65), No. 1, 77 – 92.
]Search in Google Scholar
[
[16] T. Kováč, F. Horvát, M. Čekan, B. Hučko, M. Szarvas, J. Dzuba, G. Vanko. Numerical solution of aluminum galium nitride membrane in finite element analysis. 15th Conference on Applied Mathematics APLIMAT 2016 Proceedings, Bratislava 2016, 2016, 700 - 710.
]Search in Google Scholar
[
[17] J. Dzuba, G. Vanko, O. Babchenko, T. Lalinský, F. Horvát, M. Szarvas, T. Kováč, B. Hučko. Strain induced response of AlGaN/GaN high electron mobility transistor located on cantilever and membrane. ASDAM 2016 - Conference Proceedings, 11th International Conference on Advanced Semiconductor Devices and Microsystems, art. no. 7805936, 2017, 227 - 230.
]Search in Google Scholar