Accès libre

Some identities for derangement and Ward number sequences and related bijections

À propos de cet article

Citez

[1] A. T. Benjamin and J. J. Quinn, Proofs that Really Count: The Art of Combinatorial Proof, Mathematical Association of America, Washington DC, 2003. 10.5948/9781614442080Search in Google Scholar

[2] A. T. Benjamin and .J. J. Quinn, An alternate approach to alternating sums: a method to die for, College Math. 39 (2008) 191-201.10.1080/07468342.2008.11922293Search in Google Scholar

[3] L. CARLITZ, Note on the numbers of .Jordan and Ward, Duke Math. I., 38 (1971) 783-790.Search in Google Scholar

[4] L. Clark, Asymptotic normality of the Ward numbers, Discrete Math., 203 (1999) 11-48.Search in Google Scholar

[5] H. W. GOULD, H. Kwong AND .J, Quaintance, On certain sums of Stirling numbers with binomial coefficients, .1. Integer Seq., 18 (2015) Art. 15.9.6.Search in Google Scholar

[6] R. L. GRAHAM, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, Boston, 1991.Search in Google Scholar

[7] T. MANSOL'R AND M. SCHORK, Commutation Relations. Normal Ordering and Stirling Num­bers, Chapman & Hall/CRC an imprint of Taylor & Francis LLC, 2015.10.1201/b18869Search in Google Scholar

[8] T. V. Narayana, Cyclic permutation of lattice paths and the Chung-Feller theorem, Skand. Aktuarietidskr, 1967 (1967) 23-30.Search in Google Scholar

[9] N. J. A. SLOANE, On-Line Encyclopedia of Integer Sequences, at http://oeis.org. Search in Google Scholar

[10] R. P. STANLEY, Enumerative Combinatorics, Vol. I, Cambridge University Press, 1997.10.1017/CBO9780511805967Search in Google Scholar

[11] M. WARD, The representation of Stirling’s numbers and Stirling’s polynomials as sums of fac­torials, Amer. J. Math., 56 (1934) 87-95.Search in Google Scholar