Accès libre

Influence of Pitting Corrosion on Fatigue and Corrosion Fatigue of Ship and Offshore Structures, Part II: Load - Pit - Crack Interaction

À propos de cet article

Citez

1. Melchers R.E.: Pitting corrosion of mild steel in marine immersion environment - Part 1: Maximum pit depth. Corrosion, 2004, Vol.60, No 9, pp.824-836.10.5006/1.3287863Search in Google Scholar

2. Chlistovsky, Hefferman P.J., DuQuesnay D.L., Corrosion fatigue behavior of 7075-T651 aluminum alloy subjected to periodic overloads, International Journal of Fatigue, 2007, vol.29, pp.1941-194910.1016/j.ijfatigue.2007.01.010Search in Google Scholar

3. van der Walde K., Hillberry B.M., Initiation and shape development of corrosion nucleated fatigue cracks, International Journal of Fatigue, 2007, Vol.29, pp.1269-128110.1016/j.ijfatigue.2006.10.010Search in Google Scholar

4. Lu B.T., Luo J.L.: Crack initiation and early propagation of X70 steel in near-neutral pH groundwater, Corrosion, 2006, No 8, Vol.62, pp. 723-73110.5006/1.3278297Search in Google Scholar

5. Dolley E.J., Lee B., Wei R.P.: The effect of pitting corrosion on fatigue life. Fatigue & Fracture of Engineering Materials & Structures, 2000, Vol.23, pp.555-56010.1046/j.1460-2695.2000.00323.xSearch in Google Scholar

6. Ishihara S., Saka S., Nan Z.Y., Goshima T., Sunada S., Prediction of corrosion fatigue lives of aluminium alloy on the basis of corrosion pit growth law, Fatigue & Fracture of Engineering Materials & Structures, 2006, Vol.29, pp.472-48010.1111/j.1460-2695.2006.01018.xSearch in Google Scholar

7. Pidapatri R.M., Patel R.R.: Correlation between corrosion pits and stresses in Al alloys. Materials Letters 2008, Vol.62, pp.4497-4499.10.1016/j.matlet.2008.08.013Search in Google Scholar

8. Medved J.J., Breton M., Irving P.E.: Corrosion pit size distribution and fatigue lives - a study of the EIFS technique for fatigue design in the presence of corrosion. International Journal of Fatigue 2004, vol.26, pp.71-80.10.1016/S0142-1123(03)00069-0Search in Google Scholar

9. Pao P.S., Gill S.J., Feng C.R.: On fatigue crack initiation from corrosion pits in 7075-T7351 aluminum alloy, Scripta Mater., 2000, Vol. 43, 391-39610.1016/S1359-6462(00)00434-6Search in Google Scholar

10. Sankaran K.K., Perez R., Jata K.V.: Effect of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6: Modeling and experimental studies, Materials Science and Engineering, 2001, Vol. A297, pp223-229 1010.1016/S0921-5093(00)01216-8Search in Google Scholar

11. Goto M., Nisitani H.: Crack initiation and propagation behavior of a heat-treated carbon steel in corrosion fatigue. Fatigue & Fracture of Engineering Materials & Structures, 1992, Vol.15, pp.353-363 1110.1111/j.1460-2695.1992.tb01277.xSearch in Google Scholar

12. Kawai S., Kasai K.: Considerations of allowable stress of corrosion fatigue (focused on the influence of pitting), Fatigue & Fracture of Engineering Materials & Structures, 1985, Vol.8, pp.115-127 1210.1111/j.1460-2695.1985.tb01198.xSearch in Google Scholar

13. Miller K.J., Akid R.: The application of microstructural Fracture Mechanics to various metal surface states. Proc. Royal Society A, 1996, Vol. 452, 1411-1432 1310.1098/rspa.1996.0072Search in Google Scholar

14. Nakajima M., Tokaji K.: Fatigue life distribution and growth of corrosion pits an a medium carbon steel in 3%NaCl Solution. Fatigue & Fracture of Engineering Materials & Structures, 1995, Vol.18, pp.345-351 1410.1111/j.1460-2695.1995.tb00880.xSearch in Google Scholar

15. Wang Y., Akid R. Role of nonmetallic inclusions in fatigue, pitting and corrosion fatigue. Corrosion, 1996, Vol. 52, p.92-104 1510.5006/1.3292108Search in Google Scholar

16. Cornet i., Golan S.: Influence of temperature on corrosion fatigue. Corrosion, 1959, No 5, p.262 1610.5006/0010-9312-15.5.58Search in Google Scholar

17. Linder J., Blom R.: Development of a method for corrosion fatigue life prediction of structurally loaded bearing steel. Corrosion, 2001, Vol. 57, No.5, pp.404-412 1710.5006/1.3290364Search in Google Scholar

18. Qian Y.R., Cahoon J.R.: Crack initiation mechanisms for corrosion fatigue of austenitic stainless steel. Corrosion, 1997, Vol.53, No.2, pp.129-135 1810.5006/1.3280442Search in Google Scholar

19. Ahin S.-H. Lawrence Jr. F.V., Metzger M.M.: Corrosion fatigue of an HSLA steel. Fatigue & Fracture of Engineering Materials & Structures, 1992, Vol.15, pp.625-642 1910.1111/j.1460-2695.1992.tb01302.xSearch in Google Scholar

20. Boukerrou A., Cottis R.A.: Crack initiation in the corrosion fatigue of structural steels in salt solutions. Corrosion Science, 1993, Vol.35, pp.577-585 2010.1016/0010-938X(93)90192-JSearch in Google Scholar

21. Kumakura Y., Takanashi M., Fuji A., Kitagawa M., Ojima M., Kobayashi Y.: Fatigue strength of coated steel plate in seawater. Proc. Ninth Int. Offshore and Polar Engineering Conference, Brest, France, May 30 - June 4, 1999, Vol.4, pp. 108-113. 21Search in Google Scholar

22. Maximovich, Kobzaruk: Initiation and propagation of low-cycle fatigue cracks in 15HN5DMF steel in seawater. Physical Chemical Mechanics of Materials,1985, Vol.20, No 5, pp.16-20 (in Russian) 2210.1007/BF00723134Search in Google Scholar

23. Shi P., Mahadevan S.: Probabilistic corrosion fatigue life prediction. 8th ASCE Specialty Conference Probabilistic Mechanics and Structural Reliability. 2000 23Search in Google Scholar

24. Zhang R., Mahadevan S.: Reliability based reassessment of corrosion fatigue life. Structural Safety, 2001, Vol.23, pp.77-91 2410.1016/S0167-4730(01)00002-9Search in Google Scholar

25. Akid R., Dmytrakh I.M., Gonzales-Sanchez J.: Fatigue damage accumulation: the role of corrosion on the early stages of crack development. Corrosion Engineering, Science and Technology, 2006, Vol.41, No.4, pp.328-335. 2510.1179/174327806X139108Search in Google Scholar

26. Jakubowski M., Influence of pitting corrosion on fatigue and corrosion fatigue of ship structures. Part 1:Mechanisms and modeling of pitting corrosion of ship structures. Polish Maritime Research, 27. Evans U.R., Tohopandui Simnad M., The mechanism of corrosion fatigue of mild steel. Proceedings of the Royal Society, Series A,1947, vol.188, pp.372-392. 27Search in Google Scholar

28. Melchers R.E., Development of new applied models for steel corrosion in marine applications including shipping. SAOS, 2008, Vol.3, No2, pp.135-144. 2810.1080/17445300701799851Search in Google Scholar

29. Kobzaruk K.A.V., Marichev V.A.: Corrosion and corrosion fatigue resistance of steels in real marine and in laboratory. Physical Chemical Mechanics of Materials,1981, Vol.16, No 2, pp.15-21 (in Russian) 29Search in Google Scholar

30. Booth G.S.: Constant amplitude corrosion fatigue strength of welded joints. Fatigue in Offshore Structural Steels (Proc. of a Conference London, 24-25 Feb., 1981), Paper No 2, pp.5-16 30Search in Google Scholar

31. Konda N., Suzuki S., Tada N., Kho Y., Kazushige A., Watanabe E., Yamamoto M and Yaima H.: Effect of microstructure on fatigue properties of steel in seawater - developement of steels for high resistance to fatigue in ships, Part 2. J Soc. Naval Architects of Japan, 2001, Vol.191, pp.229-237. 3210.2534/jjasnaoe1968.2002.191_229Search in Google Scholar

32. Rajasankar J., Iyer N.Y., Gopinath S., Probabilistic modeling of fatigue crack initiation from pits and pit clusters in aluminum alloys, Corrosion Engineering, Science and Technology, 2007, Vol.42, No.3, pp.260-265 3310.1179/174327807X214626Search in Google Scholar

33. Jones K, Hoeppner D.W., Prior corrosion and fatigue of 2024-T3 aluminum alloy, Corrosion Science, 2006, Vol.48, pp.3109-3122 3410.1016/j.corsci.2005.11.008Search in Google Scholar

34. Grimes D., i in.: Corrosion fatigue strength of welded K-joints and HSLA-cast steel hybrid K-nodes at component-similar scale. Steels in Marine Structures, Amsterdam 1987, pp.465-478.Search in Google Scholar

35. Ebara R.: Corrosion fatigue phenomena learned from failure analysis, Engineering Failure Analysis, 2006, Vol.13, pp.516-525 3610.1016/j.engfailanal.2004.12.024Search in Google Scholar

36. Sonsino C.M., Lipp K., Lachman E.: Corrosion fatigue of welded high-strength cast and structural steel joints under constant and variable amplitude loading. Proc. Fifth Int. Offshore and Polar Conference, The Hague, June 11-16, 1995, pp.53-58. 37Search in Google Scholar

37. Jootsen M.W., Salama N.N.: Corrosion fatigue of aluminum sprayed, high strength steel immersed in seawater. Material Performance, 1984, Vol.23, No 7, pp.22-26 38Search in Google Scholar

38. Booth G.S.: Techniques for improving the corrosion fatigue strength for plate welded joints. Steel in Marine Structures, Amsterdam, 1987, pp.747-757 39Search in Google Scholar

39. Connolly B.J., Meng Q., Moran A.L., McCaw R.L., Mechanical and pre-corroded fatigue properties of coated aluminum aircraft skin system as function of various thermal spray processes, Corrosion Engineering, Science and Technology, 2004, Vol.39, No.2, pp.137-142 4010.1179/147842204225016958Search in Google Scholar

40. Yuasa M, Watanabe T.: Fatigue strength of corroded weld joints. J. Society of the Naval Architects of Japan, 1994, Vol.176, pp.481-490 (in Japanese) 4110.2534/jjasnaoe1968.1994.176_481Search in Google Scholar

41. Yuasa M, Watanabe T.: Fatigue strength of corroded weld joints. ClassNK Technical Bulletin, 1996, Vol.14, pp.51-61 (in English) 42Search in Google Scholar

42. Gurney T.R.: Fatigue of welded structures. (monograph) Cambridge University Press, 1968 43Search in Google Scholar

43. Yuasa M., Watanabe T.: The influence of corrosion wastage on the fatigue strength of fillet welded joints. NK. Tech. Bulletin, 1998, pp.21-31. 44 10.2534/jjasnaoe1968.1998.184_433Search in Google Scholar

eISSN:
2083-7429
Langue:
Anglais