Accès libre

Experimental investigation of N2O formation in selective non-catalytic NOx reduction processes performed in stoker boiler

   | 30 déc. 2016
À propos de cet article

Citez

1. Wrzesińska, B., Krzywda, R., Wąsowski, T., Krawczyk, P. & Badyda, K. (2015). Technologia selektywnej niekatalitycznej redukcji tlenków azotu pod kątem zastosowania jej w kotłach dla energetyki przemysłowej i ciepłownictwa (A selective non-catalytic reduction of nitrogen oxides technology for application in industrial and municipal heating boilers). Przem. Chem. 94(4) 608–613. DOI: 10.15199/62.2015.4.22 (in Polish).10.15199/62.2015.4.22Search in Google Scholar

2. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control), OJ L 334/17.Search in Google Scholar

3. Regulation of the Minister of Environment of 4 November 2014 on emission standards for certain types of plants, fuel combustion sources.Search in Google Scholar

4. Badyda, K. & Lewandowski, J. (2009). Uwarunkowania wzrostu zapotrzebowania na gaz dla energetyki i ciepłownictwa [Determinants of growth in demand for gas for power and heat generation]. Rynek Energ. 5(84) (in Polish).Search in Google Scholar

5. Krawczyk, P. & Badyda, K. (2014). Numerical analysis of the impact of parameters of urea solution injection on reagent penetration inside the combustion chamber of a WR 25 boiler. Rynek Energ. 6, 115–139.Search in Google Scholar

6. Warych, J. (1994). Oczyszczanie przemysłowych gazów odlotowych [Treatment of industrial flue gases]. WNT, Warsaw, Poland (in Polish).Search in Google Scholar

7. Rota, R., Antos, D., Zanoelo, E.F. & Morbidelli, M. (2002). Experimental and modeling analysis of the NO x OUT process. Chem. Engine. Sci. 57(1), 27–38. http://dx.doi.org/10.1016/S0009-2509(01)00367-010.1016/S0009-2509(01)00367-0Search in Google Scholar

8. Integrated Pollution Prevention and Control, Reference Document on Best Available Techniques for Large Combustion Plants, European Commission, July 2006.Search in Google Scholar

9. EPA (2010). Methane and Nitrous Oxide Emissions from Natural Sources (PDF). U.S. Environmental Protection Agency, Washington, DC, USA.Search in Google Scholar

10. KOBIZE (2014). National Inventory Report 2014 – Greenhouse gas inventory in Poland for 1988–2012.Search in Google Scholar

11. Polish Ministry of Environment. (2003). Strategies for reduction of greenhouse gas emissions in Poland until 2020.Search in Google Scholar

12. Muzio, L.J., Quartucy G.C. & Cichanowiczy J.E. (2002). Overview and status of post-combustion NOx control: SNCR, SCR and hybrid technologies. Inter. J. Environ. Pollut. 17(1–2). DOI: 10.1504/IJEP.2002.000655.10.1504/IJEP.2002.000655Search in Google Scholar

13. Jodal, M., Nielsen, C., Hulgaard, T. & Dam-Johansen, K. (1991). Pilot-scale experiments with NH3 and urea as reductants in selective non-catalytic reduction of nitric oxide. 23rd Symp. (Int.) on Combus. pp. 237–243. DOI: 10.1016/S0082-0784(06)80265-1.10.1016/S0082-0784(06)80265-1Search in Google Scholar

14. Gentemann, A.M.G. & Caton, J.A. (2001). Decomposition and Oxidation of a Urea-Water Solution as Used in Selective Non-Catalytic Removal (SNCR) Processes. 2nd Joint Meeting of the United States Sections: The Combustion Institute, 25–28 March 2001, Oakland, CA.Search in Google Scholar

15. M endoza-Covarrubias, C., Romero, C.E., Hernandez-Rosales, F. & Agarwal, H. (2011). N2O Formation in Selective Non-Catalytic NOx Reduction Processes. J. Environ. Protect. 2, 1095–1100. DOI: 10.4236/jep.2011.28126.10.4236/jep.2011.28126Search in Google Scholar

16. Weijuan, Y., Junhu, Z., Zhijun, Z. & Kefa, C. (2007). Nitrous oxide formation and emission in selective non-catalytic reduction process. Front. Energ. Pow. Eng. China 1(2), 228–232. DOI: 10.1007/s11708-007-0031-9.10.1007/s11708-007-0031-9Search in Google Scholar

17. Krawczyk, P., Badyda, K., Szczygieł, J. & Młynarz, S. (2015). Investigation of exhaust gas temperature distribution within a furnace of a stoker fired boiler as a function of its operating parameters. Arch. Thermodyn. 36(3), 3–14. DOI: 10.1515/aoter-2015-0018.10.1515/aoter-2015-0018Search in Google Scholar

18. Hernik, B. (2012). Numerical modeling of BP 1150 boiler by commercial numerical code. J. Pow. Technol. 92(1), 34–47.Search in Google Scholar

19. Winter, F., Wartha, C. & Hofbauer, H. (1999). NO and N2O formation during the combustion of wood, straw, malt waste and peat. Biores. Technol. 70, 39–49. http://dx.doi.org/10.1016/S0960-8524(99)00019-X10.1016/S0960-8524(99)00019-XSearch in Google Scholar

20. Blejchař, T. & Dolníčková, D. (2013). Numerical Simulation of SNCR Technology with Simplified Chemical Kinetics Model. EPJ Web of Conferences 45, 01015 DOI: 10.1051/epjconf/2014534501015.Search in Google Scholar

21. Kramlich, J., Cole, J., McCarthy, J., Lanier, J. & McSorley, J. (1987). Mechanisms of N2O Formation in Flames. Fall Meeting, Paper 1A-006, Western States Section, The Combustion Institute.Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering