Accès libre

Improving heat aging and mechanical properties of fluoroelastomer using carbon nanotubes

À propos de cet article

Citez

1. Endo, M., Noguchi, T., Ito, M., Takeuchi, K., Hayashi, T., Kim, Y.A., Wanibuchi, T., Jinnai, H., Terrones, M. & Dresselhaus, M.S. (2008). Extreme-performance rubber nanocomposites for probing and excavating deep oil resources using multi-walled carbon nanotubes. Adv. Func. Mat. 18, 3403-3409. DOI: 10.1002/adfm.200801136.10.1002/adfm.200801136Search in Google Scholar

2. Noguchi, T., Ueki, H., Inukai, S., Iinou, S. & Ito, M. (2011). U.S Patent No. 2011/0160375. Washington, D.C.: U.S. Patent and Trademark Offi ce.Search in Google Scholar

3. Ito, M., Noguchi, T., Ueki, H., Takeuchi, K. & Endo, M. (2011). Carbon nanotube enables quantum leap in oil recovery. Mater. Res. Bull. 46, 1480-1484. DOI: 10.1016/j. materresbull.2011.04.028.Search in Google Scholar

4. Faulkner, W.R. , Mumby, K.J., Fischer, A., Jozokos, T. & Zhou, S. (2009). Multiwall carbon nanotube reinforcement of HNBR and FKM. Proc. of the Fall 176th Technical meeting of the rubber division, Pittsburgh, PA, USA, 13-15 Oct.Search in Google Scholar

5. Wang, Y., Liu, L., Luo, Y. & Jia, D. (2009). Aging behavior and thermal degradation of fl uoroelastomer reactive blends with poly-phenol hydroxy EPDM. Polym. Degrad. Stab. 94, 443-449. DOI: 10.1016/j.polymdegradstab.2008.11.007.10.1016/j.polymdegradstab.2008.11.007Search in Google Scholar

6. Smith, G., Park, D., Titchener, K., Davies, R. & West, R. (1995). Surface studies of oil-seal degradation. Appl. Surf. Sci. 90, 357-371. DOI: 10.1016/0169-4332(95)00165-4.10.1016/0169-4332(95)00165-4Search in Google Scholar

7. Mago, G., Fisher, F.T. & Kalyon, D.M. (2009). Deformation- induced crystallization and associated morphology development of carbon nanotube-PVDF nanocomposites. J. Nanosci. Nanotechnol. 9, 3330-3340. DOI: http://dx.doi.org/10.1166/jnn.2009.VC0810.1166/jnn.2009.VC0819453012Search in Google Scholar

8. Huang, S., Yee, W.A., Tjiu, W.C., Liu, Y., Kotaki, M., Boey, Y.C.F., Ma, J., Liu, T. & Lu, X. (2008). Electrospinning of polyvinylidene difl uoride with carbon nanotubes: synergistic effects of extensional force and interfacial interaction on crystalline structures. Langmuir 24, 13621-13626. DOI: 10.1021/ la8024183.10.1021/la802418318956851Search in Google Scholar

9. Maiti, M. & Bhowmick, A.K. (2007). Dynamic viscoelastic properties of fl uoroelastomer/clay nanocomposites. Polym. Eng. Sci. 47, 1777-1787. DOI: 10.1002/pen.20877.10.1002/pen.20877Search in Google Scholar

10. Chae, D.W. & Hong, S.M. (2011). Rheology, crystallization behavior under shear, and resultant morphology of PVDF/ multiwalled carbon nanotube composites. Macromol. Res. 19, 326-331. DOI: 10.1007/s13233-011-0403-1.10.1007/s13233-011-0403-1Search in Google Scholar

11. Yang, J., Wang, J., Zhang, Q., Chen, F., Deng, H., Wang, K. & Fu, Q. (2011). Cooperative effect of shear and nanoclay on the formation of polar phase in poly (vinylidene fl uoride) and the resultant properties. Polymer 52, 4970-4978. DOI: 10.1016/j.polymer.2011.08.051.10.1016/j.polymer.2011.08.051Search in Google Scholar

12. Buckley, J., Cebe, P., Cherdack, D., Crawford, J., Ince, B.S., Jenkins, M., Pan, J., Reveley, M., Washington, N. & Wolchover, N. (2006). Nanocomposites of poly(vinylidene fl uoride) with organically modifi ed silicate. Polymer 47, 2411-2422. DOI: http://dx.doi.org/10.1016/j.polymer.2006.02.01210.1016/j.polymer.2006.02.012Search in Google Scholar

13. Andrew, J.S. & Clarke, D.R. (2008). Effect of electrospinning on the ferroelectric phase content of polyvinylidene difl uoride fi bers. Langmuir 24, 670-672. DOI: 10.1021/la7035407.10.1021/la703540718189433Search in Google Scholar

14. Huang, F., Wei, Q., Wang, J., Cai, Y. & Huang, Y. (2008). Effect of temperature on structure, morphology and crystallinity of PVDF nanofi bers via electrospinning. e-Polym 8, 1758. DOI: 10.1515/epoly.2008.8.1.1758.10.1515/epoly.2008.8.1.1758Search in Google Scholar

15. Yee, W.A., Nguyen, A.C., Lee, P.S., Kotaki, M., Liu, Y., Tan, B.T., Mhaisalkar, S. & Lu, X. (2008). Stress-induced structural changes in electrospun polyvinylidene difl uoride nanofi bers collected using a modifi ed rotating disk. Polymer 49, 4196-4203. DOI: http://dx.doi.org/10.1016/j.polymer.2008.07.03210.1016/j.polymer.2008.07.032Search in Google Scholar

16. Pham, T.T., Sridhar, V. & Kim, J.K. (2009). Fluoroelastomer- MWNT nanocomposites-1: Dispersion, morphology, physico-mechanical, and thermal properties. Polym. Compos. 30, 121-130. DOI: 10.1002/pc.20521.10.1002/pc.20521Search in Google Scholar

17. Shanmugharaj, A., Bae, J., Lee, K.Y., Noh, W.H., Lee, S.H. & Ryu, S.H. (2007). Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its infl uence on the properties of natural rubber composites. Compos. Sci. Technol. 67, 1813-1822. DOI: 10.1016/j.compscitech.2006.10.021.10.1016/j.compscitech.2006.10.021Search in Google Scholar

18. Freimuth, H., Sinn, C. & Dettenamaier, M. (1996). Structure and deformation behaviour of a vinylidene fl uoride-tetrafl uoroethylene- hexafl uoropropylene terpolymer. Polymer 37, 831-836. DOI: http://dx.doi.org/10.1016/0032-3861(96)87261-210.1016/0032-3861(96)87261-2Search in Google Scholar

19. Satapathy, S., Pawar, S., Gupta, P. & Varma, K. (2011). Effect of annealing on the phase transition in poly (vinylidene fl uoride) fi lms prepared using polar solvent. Bull. Mater. Sci. 34, 727-733. DOI: http://dx.doi.org/10.1007/s12034-011-0187-010.1007/s12034-011-0187-0Search in Google Scholar

20. Elashmawi, I. (2008). Effect of LiCl fi ller on the structure and morphology of PVDF fi lms. Mater. Chem. Phys. 107, 96-100. DOI: 10.1016/j.matchemphys.2007.06.045.10.1016/j.matchemphys.2007.06.045Search in Google Scholar

21. Gao, K., Hu, X., Dai, C. & Yi, T. (2006). Crystal structures of electrospun PVDF membranes and its separator application for rechargeable lithium metal cells. Mater. Sci. Eng. B 131, 100-105. DOI: 10.1016/j.mseb.2006.03.035.10.1016/j.mseb.2006.03.035Search in Google Scholar

22. Rana, D.S., Chaturvedi, D. & Quamara, J. (2009). Morphology, crystalline structure, and chemical properties of 100 MeV Ag-ion beam irradiated polyvinylidene fl uoride (PVDF) thin fi lm. J. Optoelectron. Adv. M. 11, 705-712.Search in Google Scholar

23. Ozkazanc, E., Guney, H.Y., Guner, S. & Abaci, U. (2010). Morphological and dielectric properties of barium chloride-fi lled poly (vinylidene fl uoride) fi lms. Polym. Compos. 31, 1782-1789. DOI: 10.1002/pc.20970.10.1002/pc.20970Search in Google Scholar

24. Sajkiewicz, P. (1999). Crystallization behaviour of poly (vinylidene fl uoride). Eur. Polym. J. 35, 1581-1590. DOI: 10.1016/ S0014-3057(98)00242-0.10.1016/S0014-3057(98)00242-0Search in Google Scholar

25. Tieyuan, F., Zhishen, M., Ping, H., Yuchen, Q., Shuyun, W. & Donglin, C. (1986). Study on factors affecting room temperature transition of polytetrafl uoroethylene. Chin. J. Polym. Sci. (CJPS) 4, 170-179.Search in Google Scholar

26. Heidarian, J. & Hassan, A. (2014). Microstructural and thermal properties of fl uoroelastomer/carbon nanotube composites. Compos. Part B-Eng. 58, 166-174. DOI: http://dx.doi.org/10.1016/j.compositesb.2013.10.05410.1016/j.compositesb.2013.10.054Search in Google Scholar

27. Heidarian, J., Hassan, A. & Normasmira, A.R. (2015). Improving the thermal properties of fl uoroelastomer (Viton GF-600S) using acidic surface modifi ed carbon nanotube. Polímeros 25(4), 392-401. DOI: 10.1080/09276440.2016.1127668.10.1080/09276440.2016.1127668Search in Google Scholar

28. Heidarian, J. & Hassan, A. (2015). Improving thermal properties of fl uoroelastomer using carbon nanotubes in presence of air and under nitrogen fl ow. Asian J. Chem. 27, 1235. DOI: http://dx.doi.org/10.14233/ajchem.2015.1720010.14233/ajchem.2015.17200Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering