1. bookVolume 18 (2016): Edition 2 (June 2016)
Détails du magazine
Première parution
03 Jul 2007
4 fois par an
access type Accès libre

Kinetic, isotherm and thermodynamics investigation on adsorption of divalent copper using agro-waste biomaterials, Musa acuminata, Casuarina equisetifolia L. and Sorghum bicolor

Publié en ligne: 30 Jun 2016
Volume & Edition: Volume 18 (2016) - Edition 2 (June 2016)
Pages: 68 - 77
Détails du magazine
Première parution
03 Jul 2007
4 fois par an

Three novel and distinct agricultural waste materials, viz., Casuarinas fruit powder (CFP), sorghum stem powder (SSP) and banana stem powder (BSP) were used as low cost adsorbents for the removal of toxic copper(II) from aqueous solutions. Acid treated adsorbents were characterized by SEM, EDX and FTIR. Different factors effecting adsorption capacity were analyzed and the efficiency order was BSP>SSP>CFP. Based on the extent of compatibility to Freundlich/Langmuir/D-R/Temkin adsorption isotherm and different models (pseudo-first and second order, Boyd, Weber’s and Elovich), chemisorption primarily involved in the case of CFP and SSP, whereas, simultaneous occurrence of chemisorption and physisorption was proposed in the case of BSP. Based on the observations, it was proposed that three kinetic stages involve in adsorption process viz., diffusion of sorbate to sorbent, intra particle diffusion and then establishment of equilibrium. These adsorbents have promising role towards removal of Cu(II) from industrial wastewater to contribute environmental protection.


1. Larous, S. & Meniai, A.H. (2012). Removal of copper (II) from aqueous solution by agricultural by-products-sawdust. Ener. Proc. 18, 915–923. DOI: 10.1016/j.egypro.2012. in Google Scholar

2. Rozaini, C.A., Jain, K., Oo, C.W., Tan, K.W., Tan, L.S., Azraa, A. & Tong, K.S. (2010). Optimization of nickel and copper ions removal by modified mangrove barks. Int. J. Chem. Eng. Appl. 1(1), 84–89. DOI: 10.7763/IJCEA.2010.V1.14.10.7763/IJCEA.2010.V1.14Search in Google Scholar

3. WHO, World Health Organization (2004). Guidelines for Drinking-water Quality, third ed., Recommendations, Geneva.Search in Google Scholar

4. Manzoor, Q., Nadeem, R., Iqbal, M., Saeed, R. & Ansari, T.M. (2013). Organic acids pretreatment effect on Rosa bourbonia phyto-biomass for removal of Pb (II) and Cu (II) from aqueous media. Biores. Technol. 132, 446–452. DOI: 10.1016/j.biortech.2013. in Google Scholar

5. Patrulea, V., Negrulescu, A., Mincea, M., Pitulice, L., Spiridon, O. & Ostafe, V. (2013). Optimization of the removal of copper(ii) ions from aqueous solution on chitosan and cross-linked chitosan beads. BioResources. 8. DOI: 10.15376/biores.8.1.1147-1165.10.15376/biores.8.1.1147-1165Search in Google Scholar

6. Acar, F.N. & Eren, Z. (2006). Removal of Cu(II) ions by activated poplar sawdust (Samsun Clone) from aqueous solutions. J. Hazard. Mater. 137(2), 909–914. DOI: 10.1016/j.jhazmat.2006. in Google Scholar

7. Ramya, P.M., Venkata, N.R., Jayasravanthi, M. & Dulla, B.J. (2015). Chemical oxygen demand reduction from coffee processing waste water-A comparative study on usage of biosorbents prepared from agricultural wastes, Global NEST J. 17(2), 291–300.Search in Google Scholar

8. Cestari, A.R., Vieira, E.F., de Oliveira, I.A. & Bruns, R.E. (2007). The removal of Cu(II) and Co(II) from aqueous solutions using cross-linked chitosan-evaluation by the factorial design methodology, J. Hazard. Mater. 143(1–2), 8–16. DOI: 10.1016/j.jhazmat.2006. in Google Scholar

9. Lima, I.S., Lazarin, A.M. & Airoldi, C. (2005). Favorable chitosan/cellulose film combinations for copper removal from aqueous solutions. Int. J. Biol. Macromol. 36(1), 79–83. DOI: 10.1016/j.ijbiomac.2005. in Google Scholar

10. Jamnongkan, T., Kantarot, K., Niemtang, K., Pansila, P.P. & Wattanakornsiri, A. (2014). Kinetics and mechanism of adsorptive removal of copper from aqueous solution with poly (vinyl alcohol) hydrogel. Trans. Nonfer. Met. Soc. China 24(10), 3386–3393. DOI: 10.1016/S1003-6326(14)63481-6.10.1016/S1003-6326(14)63481-6Search in Google Scholar

11. Weng, C.H., Lin, Y.T., Hong, D.Y., Sharma, Y.C., Chen, S.C. & Tripathi, K. (2014). Effective removal of copper ions from aqueous solution using base treated black tea waste. Ecol. Eng. 67, 127–133. DOI: 10.1016/j.ecoleng.2014. in Google Scholar

12. Vieira, M.G.A., de Almeida Neto, A.F., da Silva, M.G.C., Carneiro, C.N. & Melo Filho, A.A. (2014). Adsorption of lead and copper ions from aqueous effluents on rice husk ash in a dynamic system. Braz. J. Chem. Eng. 31(2), 519–529. DOI: 10.1590/0104-6632.20140312s00002103.10.1590/0104-6632.20140312s00002103Search in Google Scholar

13. Hossain, M.A., Ngo, H.H., Guo, W.S. & Setiadi, T. (2012). Adsorption and desorption of copper (II) ions onto garden grass. Biores. Technol. 121, 386–395. DOI: 10.1016/j.biortech.2012. in Google Scholar

14. Liang, S., Guo, X., Feng, N. & Tian, Q. (2010). Isotherms, kinetics and thermodynamic studies of adsorption of Cu2+ from aqueous solutions by Mg2+/K+ type orange peel adsorbents. J. Hazard. Mater. 174(1), 756–762. DOI: 10.1016/j.jhazmat.2009. in Google Scholar

15. Bilal, M., Shah, J.A., Ashfaq, T., Gardazi, S.M.H., Tahir, A.A., Pervez, A. & Mahmood, Q. (2013). Waste biomass adsorbents for copper removal from industrial wastewater-A review. J. Hazard. Mater. 263, 322–333. DOI: 10.1016/j.jhazmat.2013. in Google Scholar

16. Chen, J.P. & Yang, L. (2005). Chemical modification of Sargassum sp. for prevention of organic leaching and enhancement of uptake during metal biosorption. Ind. Eng. Chem. Res. 44(26), 9931–9942. DOI: 10.1021/ie050678t.10.1021/ie050678tSearch in Google Scholar

17. Li, Y., Xia, B., Zhao, Q., Liu, F., Zhang, P., Du, Q. & Xia, Y. (2011). Removal of copper ions from aqueous solution by calcium alginate immobilized kaolin. J. Env. Sci. 23(3), 404–411. DOI: 10.1016/S1001-0742(10)60442-1.10.1016/S1001-0742(10)60442-1Search in Google Scholar

18. Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A.R. & Ro, K.S. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chem. Eng. J. 200, 673–680. DOI: 10.1016/j.cej.2012. in Google Scholar

19. Annual book of ASTM standards part – 23, (1972). Am. Soc. Test. Mater. Philadelphia.Search in Google Scholar

20. Gong, J.L., Wang, X.Y., Zeng, G.M., Chen, L., Deng, J.H., Zhang, X.R. & Niu, Q.Y. (2012). Copper (II) removal by pectin–iron oxide magnetic nanocomposite adsorbent. Chem. Eng. J. 185, 100–107. DOI: 10.1016/j.cej.2012. in Google Scholar

21. Li, K., Fu, S., Zhan, H., Zhan, Y. & Lucia, L. (2010). Analysis of the chemical composition and morphological structure of banana pseudo-stem. Bioresources 5(2), 576–585. DOI: 10.15376/biores.5.2.576-585Search in Google Scholar

22. Firdous, R. & Gilani, A.H. (2001). Changes in chemical composition of sorghum as influenced by growth stages and cultivar. Asian Australas. J. Anim. Sci. 14(7), 935–940. DOI: http://dx.doi.org/10.5713/ajas.2001.935.Search in Google Scholar

23. Ogunwande, I.A., Flamini, G., Adefuye, A.E., Lawal, N.O., Moradeyo, S. & Avoseh, N.O. (2011). Chemical compositions of Casuarina equisetifolia L., Eucalyptus toreliana L. and Ficus elastica Roxb. ex Hornem cultivated in Nigeria. S. Afr. J. Bot. 77(3), 645–649. DOI: 10.1016/j.sajb.2011. in Google Scholar

24. Lerivrey, J., Dubois, B., Decock, P., Micera, G., Urbanska, J. & Kozłowski, H. (1986). Formation of D-glucosamine complexes with Cu (II), Ni (II) and Co (II) ions. Inorg. Chim. Acta 125(4), 187–190. DOI: 10.1016/S0020-1693(00)81209-8.10.1016/S0020-1693(00)81209-8Search in Google Scholar

25. Mahaninia, M.H., Rahimian, P. & Kaghazchi, T. (2015). Modified activated carbons with amino groups and their copper adsorption properties in aqueous solution. Chin. J. Chem. Eng. 23(1), 50–56. DOI: 10.1016/j.cjche.2014. in Google Scholar

26. Sarioglu, M., Atay, Ü.A. & Cebeci, Y. (2005). Removal of copper from aqueous solutions by phosphate rock. Desalination 181(1), 303–311. DOI: 10.1016/j.desal.2005. in Google Scholar

27. Kizilkaya, B., Tekinay, A.A. & Dilgin, Y. (2010). Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fish bones. Desalination 264(1), 37–47. DOI: 10.1016/j.desal.2010. in Google Scholar

28. Ge, Y., Cui, X., Kong, Y., Li, Z., He, Y. & Zhou, Q. (2015). Porous geopolymeric spheres for removal of Cu (II) from aqueous solution: Synthesis and evaluation. J. Hazard. Mater. 283, 244–251. DOI: 10.1016/j.jhazmat.2014. in Google Scholar

29. Lagergren, S. (1898). On the theory of so-called adsorption solutes, The Royal Swedish Academy of Sciences. Handlingar 24(4), 1–39 (in German).Search in Google Scholar

30. Ho, Y.S. & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451–465. DOI: 10.1016/S0032-9592(98)00112-5.10.1016/S0032-9592(98)00112-5Search in Google Scholar

31. Ho, Y.S. & McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 34(3), 735–742. DOI: 10.1016/S0043-1354(99)00232-8.10.1016/S0043-1354(99)00232-8Search in Google Scholar

32. Ahluwalia, S.S. & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Biores. Technol. 98(12), 2243–2257. DOI:10.1016/j.biortech.2005. in Google Scholar

33. Igwe, J.C. & Abia, A.A. (2005). Competitive adsorption of Zn (II), Cd (II) and Pb (II) ions from aqueous and nonaqueous solution by maize cob and husk. Afr. J. Biotechnol. 4(10), 1113–1116. DOI: 10.5897/AJB2005.000-3220.Search in Google Scholar

34. Goswami, S. & Ghosh, U.C. (2006). Studies on adsorption behaviour of Cr (VI) onto synthetic hydrous stannic oxide. Water SA, 31(4), 597–602. http://dx.doi.org/10.4314/wsa.v31i4.5150Search in Google Scholar

35. Greluk, M. & Hubicki, Z. (2009). Sorption of SPADNS azo dye on polystyrene anion exchangers: equilibrium and kinetic studies. J. Hazard. Mater. 172(1), 289–297. DOI: 10.1016/j.jhazmat.2009. in Google Scholar

36. Kumar, P. S., Ramalingam, S., Kirupha, S.D., Murugesan, A., Vidhyadevi, T. & Sivanesan, S. (2011). Adsorption behavior of nickel (II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design. Chem. Eng. J. 167(1), 122–131. DOI: 10.1016/j.cej.2010. in Google Scholar

37. Garg, U.K., Kaur, M.P., Garg, V.K. & Sud, D. (2007). Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J. Hazard. Mater. 140(1), 60–68. DOI: 10.1016/j.jhazmat.2006. in Google Scholar

38. Chang, Y., Liu, H., Zha, F., Chen, H., Ren, X. & Lei, Z. (2011). Adsorption of Pb (II) by N-methylimidazole modified palygorskite. Chem. Eng. J. 167(1), 183–189. DOI: 10.1016/j.cej.2010. in Google Scholar

39. Özçimen, D. & Ersoy-Meriçboyu, A. (2009). Removal of copper from aqueous solutions by adsorption onto chestnut shell and grape seed activated carbons. J. Hazard. Mater. 168(2), 1118–1125. DOI: 10.1016/j.jhazmat.2009. in Google Scholar

40. Krishnan, K.A. & Anirudhan, T.S. (2003). Removal of cadmium (II) from aqueous solutions by steam-activated sulphurised carbon prepared from sugar-cane bagasse pith: Kinetics and equilibrium studies. Water SA, 29(2), 147–156. http://dx.doi.org/10.4314/wsa.v29i2.4849Search in Google Scholar

41. Zheng, W., Li, X. M., Wang, F., Yang, Q., Deng, P. & Zeng, G.M. (2008). Adsorption removal of cadmium and copper from aqueous solution by areca-a food waste. J. Hazard. Mater. 157(2), 490–495. DOI: 10.1016/j.jhazmat.2008. in Google Scholar

42. Kumar, U. (2011). Thermodynamics of the Adsorption of Cd (II) from Aqueous Solution on NCRH. I. Jesd. 2(5), 334–336. DOI: 10.7763/IJESD.2011.V2.147.10.7763/IJESD.2011.V2.147Search in Google Scholar

43. Agrawal, A., Sahu, K.K. & Pandey, B.D. (2004). Removal of zinc from aqueous solutions using sea nodule residue. Coll. Surf. A. 237(1), 133–140. DOI: 10.1016/j.colsurfa.2004. in Google Scholar

44. Tewari, N., Vasudevan, P. & Guha, B.K. (2005). Study on biosorption of Cr (VI) by Mucor hiemalis. Biochem. Eng. J. 23(2), 185–192. DOI: 10.1016/j.bej.2005. in Google Scholar

45. Sharma, Y.C., Prasad, G. & Rupainwar, D.C. (1991). Removal of Ni (II) from aqueous solutions by sorption. Int. J. Environ. Stud. 37(3), 183–191. DOI: 10.1080/00207239108710629.10.1080/00207239108710629Search in Google Scholar

46. Dai, J. & Mumper, R.J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10), 7313–7352. DOI: 10.3390/molecules15107313.10.3390/molecules15107313625914620966876Search in Google Scholar

47. Ho, Y.S., Porter, J.F. & McKay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Poll. 141(1–4), 1–33. DOI: 10.1023/A:1021304828010.10.1023/A:1021304828010Search in Google Scholar

48. Panday, K.K., Prasad, G. & Singh, V.N. (1984). Removal of Cr (V1) from aqueous solutions by adsorption on fly ash-wollastonite. J. Chem. Technol. Biotechnol. 34(7), 367–374. DOI: 10.1002/jctb.5040340703.10.1002/jctb.5040340703Search in Google Scholar

49. Varank, G., Demir, A., Yetilmezsoy, K., Top, S., Sekman, E. & Sinan Bilgili, M. (2012). Removal of 4-nitrophenol from aqueous solution by natural low-cost adsorbents. Indian J. Chem. Technol. 19(1), 7–25.Search in Google Scholar

50. Temkin, M.I. & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physio.Chim. URSS, 12(3), 217–222.Search in Google Scholar

51. Dąbrowski, A. (2001). Adsorption-from theory to practice. Adv. Coll. Interface. Sci. 93(1), 135–224. DOI: 10.1016/S0001-8686(00)00082-8.10.1016/S0001-8686(00)00082-8Search in Google Scholar

52. Ertugay, N. & Bayhan, Y.K. (2010). The removal of copper (II) ion by using mushroom biomass (Agaricus bisporus) and kinetic modeling. Desalination 255, 137–142. DOI: 10.1016/j.desal.2010. in Google Scholar

53. Weng, C.H. & Wu, Y.C. (2012). Potential low-cost biosorbent for copper removal:pineapple leaf powder. J. Environ. Eng.-ASCE 138, 286–292. http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000424Search in Google Scholar

54. Weng, C.H., Tsai, C.Z., Chu, S.H. & Sharma, Y.C. (2007). Adsorption characteristics of copper(II) onto spent activated clay. Sep. Purif. Technol. 54, 187–197. DOI: 10.1016/j.seppur.2006. in Google Scholar

55. Li, Y., Liu, F., Xia, B., Du, Q., Zhang, P., Wang, D., Wang, Z. & Xia, Y. (2010). Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. J. Hazard. Mater. 177, 876–880. DOI: 10.1016/j.jhazmat.2009. in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo