Accès libre

Two-step treatment of harmful industrial wastewater: an analysis of microbial reactor with integrated membrane retention for benzene and toluene removal

À propos de cet article

Citez

1. Christensen, J.S. & Elton, J. (1996). Soil and Groundwater pollution from BTEX. Groundwater Pollution Primer. Civil Engineering Dept., Virginia Tech., USA http://www.webapps.cee.vt.edu/ewr/environmental/teach/gwprimer/btex/btex.htmlSearch in Google Scholar

2. WHO guidelines for indoor air quality: selected pollutants. World Health Organization (2010). ISBN 978 92 890 0213 4.Search in Google Scholar

3. Vahatalo, A.V., Aamos, H. & Mantyniemi, S. (2010). Biodegradability continuum and biodegradation kinetics of natural organic matter described by the beta distribution. Biogeochemistry 100, 227–240. DOI: 10.1007/s10533-010-9419-4.10.1007/s10533-010-9419-4Search in Google Scholar

4. Liu, L., Tindall, J.A., Friedel, M.J. & Zhang, W. (2007). Biodegradation of organic chemicals in soil/water microcosms system – Model development. Water Air Soil Pollut. 178, 131–143. DOI: 10.1007/s11270-006-9185-z.10.1007/s11270-006-9185-zSearch in Google Scholar

5. Balasubramanian, P., Philip, L. & Bhallamudi, S.M. (2011). Biodegradation of Chlorinated and Non-chlorinated VOCs from Pharmaceutical Industries. Appl. Biochem. Biotechnol. 163, 497–518. DOI: 10.1007/s12010-010-9057-2.10.1007/s12010-010-9057-220799072Search in Google Scholar

6. Agarry, S.E. & Solomon, B.O. (2008). Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescence. Int. J. Environ. Sci. Tech. 5(2), 223–232.10.1007/BF03326016Search in Google Scholar

7. Trusek-Holownia, A. (2011). Membrane Bioreactors – Models for Bioprocess Design. Desalination Publications, USA.Search in Google Scholar

8. Schleger, H.G. (1992). Allgemeine microbiologie (in german). Georg Thieme Verlag, Stuttgart, German.Search in Google Scholar

9. Zhang, X.W., Gong, X.D. & Chen, F. (1999) Dynamics and stability analysis of the growth and astaxanthin production system of Haematococcus pluvialis. J. Industr. Microbiol. Biotechnol. 23(2), 133–137.10.1038/sj.jim.290070410510493Search in Google Scholar

10. Monod, J. (1979). The growth of bacteria cultures. Ann. Rev. Microbiol. 3, 371–393.10.1146/annurev.mi.03.100149.002103Search in Google Scholar

11. Meyers, R.A. (1995). Molecular Biology and Biotechnology: A Comprehensive Desk Reference, Wiley-VCH.Search in Google Scholar

12. Yerushalmi, L. & Guiot, S.R. (1998). Kinetics of biodegradation of gasoline and its hydrocarbon constituents. Appl. Microbiol. Biotechnol. 49, 475–481.10.1007/s0025300512019615487Search in Google Scholar

13. Goudar, C.T. & Strevett, K.A. (1998). Comparison of relative rates of BTEX biodegradation using respirometry. J. Ind. Microbiol. Biotechnol. 21, 11–18. DOI: 1367-5435/98/$12.00.10.1038/sj.jim.2900553Search in Google Scholar

14. Gödeke, S., Vogt, C. & Schirmer, M. (2008). Estimation of kinetic Monod parameters for anaerobic degradation of benzene in groundwater. Environ. Geology 55(2), 423–431. DOI: 10.1007/s00254-007-0988-z.10.1007/s00254-007-0988-zSearch in Google Scholar

15. Morlett-Chavez, J.A., Ascacio-Martinez, J.A., Rivas-Estilla, A.M., Velazquez-Vadillo, J.F., Haskins, W.E., Barrera-Saldana, H.A. & Acuna-Askar, K. (2010). Kinetics of BTEX biodegradation by a microbial consortium acclimatized to unleaded gasoline and bacterial strains isolated from it. Intern. Biodeter. Biodegrad. 64, 581–587. DOI: 10.1016/j.ibiod.2010.06.010.10.1016/j.ibiod.2010.06.010Search in Google Scholar

16. Plaza, G.A., Wypych, J., Berry C. & Brigmon, R.L. (2007). Utilization of monocyclic aromatic hydrocarbons individually and in mixture by bacteria isolated from petroleum-contaminated soil. World J. Microbiol. Biotechnol. 23, 533–542. DOI: 10.1007/s11274-006-9256-8.10.1007/s11274-006-9256-8Search in Google Scholar

17. Nagarajan, K. & Loh, K.C. (2015). Formulation of microbial cocktails for BTEX biodegradation. Biodegradation 26 (1), 51–63. DOI: 10.1007/s10532-014-9715-0.10.1007/s10532-014-9715-0Search in Google Scholar

18. Sevillano, E., Gallego, L. & García-Lobo, L.V. (2009). First detection of the OXA-40 carbapenemase in P. aeruginosa isolates, located on a plasmid also found in A. baumannii. Pathologie Biologie 57, 493–495. DOI: 10.1016//j.patbio.2008.05.002.Search in Google Scholar

19. Tomaszewska, M. (2007). Industrial wastewater treatment by means of membrane techniques. Pol. J. Chem. Tech. 9(3), 138–142. DOI: 10.2478/v10026-007-0074-z.10.2478/v10026-007-0074-zSearch in Google Scholar

20. Kabsch-Korbutowicz, M., Wisniewski, J., Lakomska, S. & Urbanowska, A. (2011). Application of UF, NF and ED in natural organic matter removal from ion-exchange spent regenerant brine. Desalination 280(1–3), 428–431. DOI: 10.1016/j.desal.2011.06.068.10.1016/j.desal.2011.06.068Search in Google Scholar

21. Gryta, M., Markowska-Szczupak, A., Grzechulska-Damszel, J., Bastrzyk, J. & Waszak. M. (2014). The study of glycerol-based fermentation and broth downstream by nanofiltration. Pol. J. Chem. Tech. 16(4), 117–122. DOI: 10.2478/pjct-2014-0081.10.2478/pjct-2014-0081Search in Google Scholar

22. Grzechulska-Damszel, J. & Morawski, A. (2007). Removal of organic dye in the hybrid photocatalysis/membrane processes system. Pol. J. Chem. Tech. 9(2), 94–98. DOI: 10.2478/v10026-007-0036-5.10.2478/v10026-007-0036-5Search in Google Scholar

23. Lobos-Moysa, E., Dudziak, M. & Zon, Z. (2009). Biodegradation of rapeseed oil by activated sludge method in the hybrid system. Desalination 241(1–3), 43–48. DOI: 10.1016/j.desal.00.0.028229.Search in Google Scholar

24. Trusek-Holownia, A. (2011). Efficiency of alcohols biodegradation in a membrane bioreactor. Deswater 33, 389–395. DOI: 10.5004/dwt.2011.2413.10.5004/dwt.2011.2413Search in Google Scholar

25. Garcia Galan, M.J., Diaz-Cruz, M.S. & Barcelo, D. (2012). Removal of sulfonamide antibiotics upon conventional activated sludge and advanced membrane bioreactor treatment. Anal. Bioanal. Chem. 404, 1505–1515. DOI: 10.1007/s00216-012-6239-5.10.1007/s00216-012-6239-5Search in Google Scholar

26. Shim, H., Shim, E. & Yang, S.T. (2002). A continuous fibrous-bed bioreactor for BTEX biodegradation by a co-culture of Pseudomonas putida and Pseudomonas fluorescens Adv. Environ. Res. 7, 203–216. DOI: 10.1016/S1093-0191(01)00132-0.10.1016/S1093-0191(01)00132-0Search in Google Scholar

27. Trusek-Holownia, A. & Noworyta, A. (2012). Advanced treatment of wastewater with BTEX. Deswater 50, 440–445. DOI: 10.1080/19443994.2012.705089.10.1080/19443994.2012.705089Search in Google Scholar

28. Otenio, M.H., Lopes da Silva, M.T., Marques, M.L.O., Roseiro, J.C. & Bidoia E.D. (2005). Benzene, toluene and xylene biodegradation by Pseudomonas putida CCMI 852. Brazil. J. Microbiol. 36, 258–261.10.1590/S1517-83822005000300010Search in Google Scholar

29. Di Martino, C., Lopez, N.I. & Iustman, L.J.R. (2012) Isolation and characterization of benzene, toluene and xylene degrading Pseudomonas sp. selected as candidates for bioremediation. Intern. Biodeter. Biodegrad. 67, 15–20. DOI: 10.1016/j.ibiod.2011.11.004.10.1016/j.ibiod.2011.11.004Search in Google Scholar

30. Alvarez, P.J.J. & Vogel, T.M. (1995). Degradation of BTEX and their aerobic metabolites by indigenous microorganisms under nitrate reducing conditions. Wat. Sci. Technol. 31, 15–28.10.2166/wst.1995.0005Search in Google Scholar

31. Marsolek, M.D., Kirisits, M.J. & Rittmann, B.E. (2007). Biodegradation of 2,4,5-trichlorophenol by aerobic microbial communities: biorecalcitrance, inhibition, and adaptation. Biodegradation 18, 351–358. DOI: 10.1007/s10532-006-9069-3.10.1007/s10532-006-9069-317091354Search in Google Scholar

32. Song, Z., Edwards, S.R. & Burns, R.G. (2005) Biodegradation of naphthalene-2-sulfonic acid present in tannery wastewater by bacterial isolates Arthrobacter sp. 2AC and Comamonas sp. 4BC. Biodegradation 16, 237–252.10.1007/s10532-004-0889-815865148Search in Google Scholar

33. Trusek-Holownia, A. & Noworyta, A. (2012). Biological regeneration of liquid sorbents after industrial purification of outlet gases. Chem. Process Eng. 33, 667–678. DOI: 10.2478/v10176-012-0056-4.10.2478/v10176-012-0056-4Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering