Accès libre

Removal of chlorophenols from aqueous solutions by sorption onto walnut, pistachio and hazelnut shells

À propos de cet article

Citez

1. Czaplicka, M. (2004). Sources and transformations of chlorophenols in the natural environment. Sci. Total Environ. 322, 21-39. DOI: 10.1016/j.scitotenv.2003.09.015.10.1016/j.scitotenv.2003.09.015Search in Google Scholar

2. Armenante, P.M., Kafkewitz, D., Lewandowski, G.A. & Jou, C.J. (1999). Anaerobic-aerobic treatment of halogenated phenolic compounds. Water Res. 33(3), 681-692. DOI: 10.1016/ S0043-1354(98)00255-3.10.1016/S0043-1354(98)00255-3Search in Google Scholar

3. Ahlborg, U.G., Thunberg, T.M. & Spencer, H.C. (1980). Chlorinated phenols: Occurrence, toxicity, metabolism, and environmental impact Crit. Rev. Toxicol. 7, 1-35.10.3109/10408448009017934Search in Google Scholar

4. EC Decision 2455/2001/EC of the European Parliament and the Council of November 20, 2001 establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC.Search in Google Scholar

5. Bhatt, P., Kumar, M.S., Mudliar, S. & Chakrabarti, T. (2007). Biodegradation of chlorinated compounds - A review. Crit. Rev. Environ. Sci. Technol. 37, 165-198. DOI: 10.1080/10643380600776130.10.1080/10643380600776130Search in Google Scholar

6. Olaniran, A.O. & Igbinosa, E.O. (2011). Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes. Chemosphere 83, 1297-1306. DOI: 10.1016/j.chemosphere.2011.04.009.10.1016/j.chemosphere.2011.04.009Search in Google Scholar

7. Pera-Titus, M., Garcia-Molina, V., Banos, M., Jimenez, J. & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl. Catal. B-Environ. 47, 219-256. DOI: 10.1016/j.apcatb.2003.09.010.10.1016/j.apcatb.2003.09.010Search in Google Scholar

8. Kucharska, M. & Naumczyk, J. (2009). Degradation of selected chlorophenols by advanced oxidation processes. J. Environ. Prot. Eng. 35, 47-55.Search in Google Scholar

9. Munoz, M., de Pedro, Z.M., Casas, J.A. & Rodriguez, J.J. (2011). Assessment of the generation of chlorinated byproducts upon Fenton-like oxidation of chlorophenols at different conditions. J. Hazard. Mater. 190, 993-1000. DOI: 10.1016/j. jhazmat.2011.04.038.Search in Google Scholar

10. Kuśmierek, K. & Świątkowski, A. (2012). Removal of 4-chlorophenol from water by advanced oxidation processes based on hydrogen peroxide. Przem. Chem. 91(12), 2422-2424. [In polish].Search in Google Scholar

11. Jung, M.W., Ahn, K.H., Lee, Y., Kim, K.P., Rhee, J.S., Park, J.T. & Paeng, K.J. (2001). Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC). Microchem. J. 70, 123-131. DOI: 10.1016/S0026-265X(01)00109-6.10.1016/S0026-265X(01)00109-6Search in Google Scholar

12. Hamdaoui, O. & Naffrechoux, E. (2007). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part II. Models with more than two parameters. J. Hazard. Mater. 147, 401-411. DOI: 10.1016/j. jhazmat.2007.01.023.Search in Google Scholar

13. Wu, F.C., Tseng, R.L., Huang, S.C. & Juang, R.S. (2009). Characteristics of pseudo-second-order kinetic model for liquid- phase adsorption: A mini-review. Chem. Eng. J. 151, 1-9. DOI: 10.1016/j.cej.2009.02.024.10.1016/j.cej.2009.02.024Search in Google Scholar

14. Kuśmierek, K., Sankowska, M. & Świątkowski, A. (2014). Kinetic and equilibrium studies of simultaneous adsorption of monochlorophenols and chlorophenoxy herbicides on activated carbon, Desalin. Water Treat. 52, 178-183. DOI: 10.1080/19443994.2013.780984.10.1080/19443994.2013.780984Search in Google Scholar

15. Biniak, S., Świątkowski, A., Pakuła, M., Sankowska, M., Kuśmierek, K., & Trykowski, G. (2013). Cyclic voltammetric and FTIR studies of powdered carbon electrodes in the electrosorption of 4-chlorophenols from aqueous electrolytes. Carbon 51, 301-312. DOI: http://dx.doi.org/10.1016/j.carbon.2012.08.057.10.1016/j.carbon.2012.08.057Search in Google Scholar

16. Aksu, Z. & Yener. J. (1998). Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge. Proc. Biochem. 33(6), 649-655. DOI: 10.1016/S0032-9592(98)00029-6.10.1016/S0032-9592(98)00029-6Search in Google Scholar

17. Aksu, Z. & Yener, J. (2001). A comparative adsorption/ biosorption study of mono-chlorinated phenols onto various sorbents. Waste Manage. 21, 695-702. DOI: 10.1016/S0956- -053X(01)00006-X.Search in Google Scholar

18. Lin, S.H. & Juang, R.S. (2009). Adsorption of phenol and its derivatives from water using synthetic resins and low- -cost natural adsorbents: A review. J. Environ. Manage. 90, 1336-1349. DOI: 10.1016/j.jenvman.2008.09.003.10.1016/j.jenvman.2008.09.00318995949Search in Google Scholar

19. Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Proc. Biochem. 40, 997-1026. DOI: 10.1016/j.procbio.2004.04.008.10.1016/j.procbio.2004.04.008Search in Google Scholar

20. Ahmaruzzaman, M. (2008). Adsorption of phenolic compounds on low-cost adsorbents: A review. Adv. Colloid Interf. Sci. 143, 48-67. DOI: 10.1016/j.cis.2008.07.00210.1016/j.cis.2008.07.00218786665Search in Google Scholar

21. Park, D., Yun, Y.S. & Park, J.M. (2010). The past, present, and future trends of biosorption. Biotechnol. Bioproc. Eng. 15, 86-102. DOI/10.1007/s12257-009-0199-4.10.1007/s12257-009-0199-4Search in Google Scholar

22. Kumar, N.S., Subbaiah, M.V., Reddy, A.S. & Krishnaiah, A. (2009). Biosorption of phenolic compounds from aqueous solutions onto chitosan-abrus precatorius blended beads. J. Chem. Technol. Biotechnol. 84, 972-981. DOI: 10.1002/jctb.2120.10.1002/jctb.2120Search in Google Scholar

23. Kumar, N.S. & Min, K. (2011). Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorption isotherms modeling. Chem. Eng. J. 168, 562-571. DOI: 10.1016/j.cej.2011.01.023.10.1016/j.cej.2011.01.023Search in Google Scholar

24. Radhika, M. & Palanivelu, K. (2006). Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent- Kinetics and isotherm analysis. J. Hazard. Mater. B138, 116-124. DOI: 10.1016/j.jhazmat.2006.05.045.10.1016/j.jhazmat.2006.05.04516806675Search in Google Scholar

25. Kurniawan, T.A., Waihung, L., Repo, E. & Sillanpaa, M.E.T. (2010). Removal of 4-chlorophenol from contaminated water using coconut shell waste pretreated with chemical agents. J. Chem. Technol. Biotechnol. 85, 1616-1627. DOI: 10.1002/ jctb.2473.10.1002/jctb.2473Search in Google Scholar

26. Kazmi, M., Saleemi, A.R., Feroze, N., Yaqoob, A. & Ahmad, S.W. (2013) Removal of phenol from wastewater using activated waste tea leaves. Pol. J. Chem. Tech. 15(2), 1-6. DOI: 10.2478/pjct-2013-0016.10.2478/pjct-2013-0016Search in Google Scholar

27. Kuśmierek, K., Dąbek, L., Kamiński, W. & Świątkowski, A. (2013). Evaluation of the usefulness of peat for removal of chlorophenols from water solutions. Ochr. Srod. 35(2), 51-55. [In polish].Search in Google Scholar

28. Ferrero, F. (2007). Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust. J. Hazard. Mater. 142, 144-152. DOI: 10.1016/j.jhazmat.2006.07.072.10.1016/j.jhazmat.2006.07.072Search in Google Scholar

29. Dogan, M., Abak, H. & Alkan, M. (2008). Biosorption of methylene blue from aqueous solutions by hazelnut shells: equilibrium, parameters and isotherms. Water Air Soil Pollut. 192, 141-153. DOI: 10.1007/s11270-008-9641-z.10.1007/s11270-008-9641-zSearch in Google Scholar

30. Altun, T. & Pehlivan, E. (2007). Removal of copper(II) ions from aqueous solutions by walnut-, hazelnut- and almond- -shells. Clean 35(6), 601-606. DOI: 10.1002/clen.200700046.10.1002/clen.200700046Search in Google Scholar

31. Altun, T. & Pehlivan, E. (2008). Biosorption of chromium( VI) ion from aqueous solutions using walnut, hazelnut and almond shell. J. Hazard. Mater. 155, 378-384. DOI: 10.1016/j. jhazmat.2007.11.071.Search in Google Scholar

32. Teixeira, S., Delerue-Matos, C. & Santos, L. (2012). Removal of sulfamethoxazole from solution by raw and chemically treated walnut shells. Environ. Sci. Pollut. Res. 19, 3096-3106. DOI: 10.1007/s11356-012-0853-9.10.1007/s11356-012-0853-9Search in Google Scholar

33. Gala, A. & Sanak-Rydlewska, S. (2012). A comparision of Pb2+ sorption from aqueous solutions on walnut shells and plum stones. Pol. J. Environ. Stud. 20(4), 877-883.Search in Google Scholar

34. Gala, A. & Sanak-Rydlewska, S. (2012). Use of walnut shells for removing Cd2+ ions from aqueous solutions. Przem. Chem. 91(4), 531-536. [In polish].Search in Google Scholar

35. Ferro-Garcia, M.A., Rivera-Utrilla, J., Bautista-Toledo, I. & Moreno-Castilla, C. (1998). Adsorption of humic substances on activated carbon from aqueous solutions and their effect on the removal of Cr(III) ions. Langmuir 14, 1880-1886.10.1021/la970565hSearch in Google Scholar

36. Moreno-Castilla, C. (2004). Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42, 83-94. DOI: 10.1016/j.carbon.2003.09.022.10.1016/j.carbon.2003.09.022Search in Google Scholar

37. Lagergren, S. (1898). Theorie der sogenannten adsorption geloester stoffe, Vetenskapsakad. Handl. 24, 1-39.Search in Google Scholar

38. Ho, Y.S. & McKay, G. (1999). Pseudo-second-order model for sorption processes. Process. Biochem. 34, 451-465. DOI: 10.1016/S0032-9592(98)00112-5.10.1016/S0032-9592(98)00112-5Search in Google Scholar

39. Weber Jr., W. & Morris, J. (1963). Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. ASCE 18, 31-42.Search in Google Scholar

40. Hameed, B.H. (2009). Spent tea leaves: A new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. J. Hazard. Mater. 161, 753-759. DOI: 10.1016/j.jhazmat.2008.04.019.10.1016/j.jhazmat.2008.04.01918499346Search in Google Scholar

41. Lorenc-Grabowska, E. Gryglewicz, G. & Diez, M.A. (2013). Kinetics and equilibrium study of phenol adsorption on nitrogen- enriched activated carbons. Fuel 114, 235-243. DOI: http:// dx.doi.org/10.1016/j.fuel.2012.11.056.Search in Google Scholar

42. Giles, C.H., MacEwan, T.H., Nakhwa, S.N. & Smith, D. (1960). Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 60, 3973-3393.10.1039/jr9600003973Search in Google Scholar

43. Freundlich, H.M.F. (1906). Über die adsorption in lösungen. Z. Phys. Chem. 57, 385-470.Search in Google Scholar

44. Akcay, M. & Akcay, G. (2004). The removal of phenolic compounds from aqueous solutions by organophilic bentonite. J. Hazard. Mater. B113, 189-193. DOI: 10.1016/j. jhazmat.2004.06.026.Search in Google Scholar

45. Monsalvo, V.M., Mohedano, A.F. & Rodriguez, J.J. (2012). Adsorption of 4-chlorophenol by inexpensive sewage sludge- -based adsorbents. Chem. Eng. Res. Des. 90, 1807-1814. DOI: http://dx.doi.org/10.1016/j.cherd.2012.03.018.10.1016/j.cherd.2012.03.018Search in Google Scholar

46. An, F., Du, R., Wang, X., Wan, M., Dai, X. & Gao, J. (2012). Adsorption of phenolic compounds from aqueous solution using salicylic acid type adsorbent. J. Hazard. Mater. 201-202, 74-81. DOI: 10.1016/j.jhazmat.2011.11.037.10.1016/j.jhazmat.2011.11.03722169143Search in Google Scholar

47. Liu, Q.-S., Zheng, T., Wang, P., Jiang, J.P. & Li, N. (2010). Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem. Eng. J. 157, 348-356. DOI: 10.1016/j.cej.2009.11.013. 10.1016/j.cej.2009.11.013Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering