Accès libre

Hydrogen evolution reaction at Ru-modified nickel-coated carbon fibre in 0.1 M NaOH

À propos de cet article

Citez

1. Hijikata, T. (2002). Research and development of international clean energy network using hydrogen energy (WE-NET). Int. J. Hydro. Energ. 27, 115-129. DOI: 10.1016/ S0360-3199(01)00089-1.10.1016/S0360-3199(01)00089-1Search in Google Scholar

2. Momirlan, M. & Veziroglu, T.N. (2005). The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int. J. Hydro. Energ. 30, 795-802. DOI: 10.1016/j.ijhydene.2004.10.011.10.1016/j.ijhydene.2004.10.011Search in Google Scholar

3. Solmaz, R. (2013). Electrochemical preparation and characterization of C/Ni-NiIr composite electrodes as novel cathode materials for alkaline water electrolysis. Int. J. Hydro. Energ. 38, 2251-2256. DOI: 10.1016/j.ijhydene.2012.11.101.10.1016/j.ijhydene.2012.11.101Search in Google Scholar

4. Xie, Z., He, P., Du, L., Dong, F., Dai, K. & Zhang, T. (2013). Comparison of four nickel-based electrodes for hydrogen evolution reaction. Electrochim. Acta 88, 390-394. DOI: 10.1016/j.electacta.2012.10.057.10.1016/j.electacta.2012.10.057Search in Google Scholar

5. Olivares-Ramirez, J.M., Campos-Cornelio, M.L., Uribe Godinez, J., Borja-Arco, E. & Castellanos, R.H. (2007). Studies on the hydrogen evolution reaction on different stainless steels. Int. J. Hydro. Energ. 32, 3170-3173. DOI: 10.1016/j. ijhydene.2006.03.017.Search in Google Scholar

6. Jafarian, M., Azizi, O., Gobal, F. & Mahjani, M.G. (2007). inetics and electrocatalytic behavior of nanocrystalline CoNiFe alloy in hydrogen evolution reaction. Int. J. Hydro. Energ. 32, 1686-1693. DOI: 10.1016/j.ijhydene.2006.09.030.10.1016/j.ijhydene.2006.09.030Search in Google Scholar

7. Yadav, J.B., Park, J.W., Cho. Y.J. & Joo, O.S. (2010). ntermediate hydroxide enforced electrodeposited platinum film for hydrogen evolution reaction. Int. J. Hydro. Energ. 35, 10067-10072. DOI: 10.1016/j.ijhydene.2010.07.144.10.1016/j.ijhydene.2010.07.144Search in Google Scholar

8. Conway, B.E. & Tilak, B.V. (1992). Behavior and Characterization of Kinetically Involved Chemisorbed Intermediates in Electrocatalysis of Gas Evolution Reactions. Adv. Catal. 38, 1-147. DOI: 10.1016/S0360-0564(08)60006-1.10.1016/S0360-0564(08)60006-1Search in Google Scholar

9. Pierozynski, B. & Smoczynski, L. (2009). Kinetics of Hydrogen Evolution Reaction at Nickel-Coated Carbon Fiber Materials in 0.5 M H2SO4 and 0.1 M NaOH Solutions. J. Electrochem. Soc. 156(9), B1045-B1050. DOI: 10.1149/1.3158518.10.1149/1.3158518Search in Google Scholar

10. Pierozynski, B. (2011). On the Hydrogen Evolution Reaction at Nickel-Coated Carbon Fibre in 30 wt. % KOH Solution. Int. J. Electrochem. Sci. 6, 63-77.Search in Google Scholar

11. Pierozynski, B. & Mikolajczyk, T. (2012). Hydrogen Evolution Reaction at Ru-modified Carbon Fibre in 0.5 M H2SO4. Int. J. Electrochem. Sci. 7, 9697-9706.Search in Google Scholar

12. Pierozynski, B. (2013). Hydrogen evolution reaction at Pd-modified carbon fibre and nickel-coated carbon fibre materials. Int. J. Hydro. Energ. 38, 7733-7740. DOI: 10.1016/j. ijhydene.2013.04.092.Search in Google Scholar

13. McKone, J.R., Warren, E.L., Bierman, M.J., Boettcher, S.W., Brunschwig, B.S., Lewis, N.S. & Gray, H.B. (2011). Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 4, 3573-3583. DOI: 10.1039/c1ee01488a.10.1039/c1ee01488aSearch in Google Scholar

14. Warren, E.L., McKone, J.R., Atwater, H.A., Gray, H.B., Lewis, N.S. (2012). Hydrogen-evolution characteristics of Ni- Mo-coated, radial junction, n+p-silicon microwire array photocathodes. Energy Environ. Sci. 5, 9653-9661. DOI: 10.1039/ c2ee23192a.10.1039/c2ee23192aSearch in Google Scholar

15. Nocera, D.G., (2012). The Artificial Leaf. Acc. Chem. Res. 45, 767-776. DOI: 10.1021/ar2003013.10.1021/ar2003013Search in Google Scholar

16. Chen, W.F., Sasaki, K., Ma, C., Frenkel, A.I., Marinkovic, N., Muckerman, J.T., Zhu, Y., Adzic, R.R. (2012). Hydrogen- Evolution Catalysts Based on Non-Noble Metal Nickel- Molybdenum Nitride Nanosheets. Angew. Chem. Int. Ed. 51, 6131-6135. DOI: 10.1002/anie.201200699.10.1002/anie.201200699Search in Google Scholar

17. Macdonald, J.R. (1990). Impedance Spectroscopy: Old Problems and New Developments. Electrochim. Acta 35, 1483-1492. DOI: 10.1016/0013-4686(90)80002-6.10.1016/0013-4686(90)80002-6Search in Google Scholar

18. Hitz, C. & Lasia, A. (2001). Experimental study and modeling of impedance of the her on porous Ni electrodes. J. Electroanal. Chem. 500, 213-222. DOI: 10.1016/S0022-0728(00)00317-X.10.1016/S0022-0728(00)00317-XSearch in Google Scholar

19. Dominguez-Crespo, M.A., Torres-Huerta, A.M., Brachetti- Sibaja, B. & Flores-Vela, A. (2011). Electrochemical performance of Ni-RE (RE = rare earth) as electrode material for hydrogen evolution reaction in alkaline medium. Int. J. Hydro. Energ. 36, 135-151. DOI: 10.1016/j.ijhydene.2010.09.064.10.1016/j.ijhydene.2010.09.064Search in Google Scholar

20. Dominguez-Crespo, M.A., Ramirez-Meneses, E., Torres- Huerta, A.M., Garibay-Febles, V. & Philippot, K. (2012). Kinetics of hydrogen evolution reaction on stabilized Ni, Pt and Ni-Pt nanoparticles obtained by an organometallic approach. Int. J. Hydro. Energ. 37, 4798-4811. DOI: 10.1016/j. ijhydene.2011.12.109.Search in Google Scholar

21. Solmaz, R., Gundogdu, A., Doner, A. & Kardas, G. (2012). The Ni-deposited carbon felt as substrate for preparation of Pt-modified electrocatalysts: Application for alkaline water electrolysis. Int. J. Hydro. Energ. 37, 8917-8922. DOI: 10.1016/j. ijhydene.2012.03.008.Search in Google Scholar

22. Highfield, J.G., Claude, E. & Oguro, K. (1999). Electrocatalytic synergism in Ni/Mo cathodes for hydrogen evolution in acid medium: a new model. Electrochim. Acta 44, 2805-2814. DOI: 10.1016/S0013-4686(98)00403-4.10.1016/S0013-4686(98)00403-4Search in Google Scholar

23. Krstajic, N., Popovic, M., Grgur, B., Vojnovic, M. & Sepa, D. (2001). On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution: Part I. The mechanism. J. Electroanal. Chem. 512, 16-26. DOI: 10.1016/S0022-0728(01)00590-3.10.1016/S0022-0728(01)00590-3Search in Google Scholar

24. Martinez, S., Metikos-Hukovic, M. & Valek, L. (2006). Electrocatalytic properties of electrodeposited Ni-15Mo cathodes for the HER in acid solutions: Synergistic electronic effect. J. Mol. Cat. A. Chem. 245, 114-121. DOI: 10.1016/j. molcata.2005.09.040.Search in Google Scholar

25. Shervedani, R.K. & Madram, A.R. (2007). Kinetics of hydrogen evolution reaction on nanocrystalline electrodeposited Ni62Fe35C3 cathode in alkaline solution by electrochemical impedance spectroscopy. Electrochim. Acta 53, 426-433. DOI: 10.1016/j.electacta.2007.06.006. 10.1016/j.electacta.2007.06.006Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering