Accès libre

Spatial variability of long-term trends in significant wave height over the Gulf of Gdańsk using System Identification techniques

À propos de cet article

Citez

Bakhtyar, R., Ghaheri, A., Yeganeh-Bakhtiary, A. & Jeng, D.-S. (2011). Cross-shore sediment transport estimation using fuzzy inference in the swash zone. Journ. Franklin Inst. 348(8): 2005–2025.BakhtyarR.GhaheriA.Yeganeh-BakhtiaryA.JengD.-S.2011Cross-shore sediment transport estimation using fuzzy inference in the swash zoneJourn. Franklin Inst.34882005202510.1016/j.jfranklin.2011.05.016Search in Google Scholar

Breugem, W.A. & Holthuijsen, L.H. (2007). Generalised wave growth from Lake George. J. Waterw. Port Coast. Ocean Eng. 133(3): 173–182.BreugemW.A.HolthuijsenL.H.2007Generalised wave growth from Lake GeorgeJ. Waterw. Port Coast. Ocean Eng.133317318210.1061/(ASCE)0733-950X(2007)133:3(173)Search in Google Scholar

Bricheno, L.M., Soret, A., Wolf, J., Jorba, O. & Baldasano, J.M. (2013). Effect of high-resolution meteorological forcing on nearshore wave and current model performance. J. Atmospheric Ocean. Technol. 30: 1021–1037.BrichenoL.M.SoretA.WolfJ.JorbaO.BaldasanoJ.M.2013Effect of high-resolution meteorological forcing on nearshore wave and current model performanceJ. Atmospheric Ocean. Technol301021103710.1175/JTECH-D-12-00087.1Search in Google Scholar

Camus, P., Fernando, J., Mendez, F.J. & Medina, R. (2011). A hybrid efficient method to downscale wave climate to coastal areas. Coast Eng. 58(9): 851–862. 10.1016/j.coastaleng.2011.05.007.CamusP.FernandoJ.MendezF.J.MedinaR.2011A hybrid efficient method to downscale wave climate to coastal areasCoast Eng.58985186210.1016/j.coastaleng.2011.05.007Open DOISearch in Google Scholar

Cañellas, B., Balle, S., Tintoré, J. & Orfila, A. (2010). Wave height prediction in the Western Mediterranean using genetic algorithms. Ocean Eng. 37(8–9): 742–748. 10.1016/j.oceaneng.2010.02.006.CañellasB.BalleS.TintoréJ.OrfilaA.2010Wave height prediction in the Western Mediterranean using genetic algorithmsOcean Eng.378–974274810.1016/j.oceaneng.2010.02.006Open DOISearch in Google Scholar

Cerkowniak, G.R., Ostrowski, R. & Szmytkiewicz, P. (2015). Climate change related increase of storminess near Hel Peninsula, Gulf of Gdańsk, Poland. J. Water Clim. Change 6(2): 300–312. 10.2166/wcc.2014.013.CerkowniakG.R.OstrowskiR.SzmytkiewiczP.2015Climate change related increase of storminess near Hel Peninsula, Gulf of Gdańsk, PolandJ. Water Clim. Change6230031210.2166/wcc.2014.013Open DOISearch in Google Scholar

Chaudhuri, S. & Middey, A. (2011). Adaptive neuro-fuzzy inference system to forecast peak gust speed during thunderstorms. Meteorol. Atmos. Phys. 114: 139–149.ChaudhuriS.MiddeyA.2011Adaptive neuro-fuzzy inference system to forecast peak gust speed during thunderstormsMeteorol. Atmos. Phys11413914910.1007/s00703-011-0158-4Search in Google Scholar

Cieślikiewicz, W. & Herman, A. (2002). Wave and current modelling over the Baltic Sea and the Gdańsk Bay. In Proc. 28th Int. Coast. Eng. Conf. ASCE, 7–12 July 2002, (pp. 176–187), Cardiff, ASCE.CieślikiewiczW.HermanA.2002Wave and current modelling over the Baltic Sea and the Gdańsk BayIn Proc. 28th Int. Coast. Eng. Conf. ASCE7–12 July2002176187Cardiff, ASCE10.1142/9789812791306_0016Search in Google Scholar

Cieślikiewicz, W. & Paplińska-Swerpel, B. (2008). A 44-year hindcast of wind wave ff elds over the Baltic Sea. Coast. Eng. 55: 849–905.CieślikiewiczW.Paplińska-SwerpelB.2008A 44-year hindcast of wind wave ff elds over the Baltic SeaCoast. Eng5584990510.1016/j.coastaleng.2008.02.017Search in Google Scholar

Compo, G., Whitaker, J., Sardeshmukh, P., Matsui, N., Allan, R. et al. (2011). The Twentieth Century Reanalysis Project. Q. J. R. Meteorol. Soc. 137: 1–28.CompoG.WhitakerJ.SardeshmukhP.MatsuiN.AllanR.2011The Twentieth Century Reanalysis ProjectQ. J. R. Meteorol. Soc13712810.1002/qj.776Search in Google Scholar

Duan, W.Y., Han, Y., Huang, L.M., Zhao, B.B. & Wang, M.H. (2016). A hybrid EMD-SVR model for the short-term prediction of significant wave height. Ocean Eng. 124: 54–73. 10.1016/j.oceaneng.2016.05.049.DuanW.Y.HanY.HuangL.M.ZhaoB.B.WangM.H.2016A hybrid EMD-SVR model for the short-term prediction of significant wave heightOcean Eng124547310.1016/j.oceaneng.2016.05.049Open DOISearch in Google Scholar

Etemad-Shahidi, A. & Mahjoobi, J. (2009). Comparison between M5′ model tree and neural networks for prediction of significant wave height in Lake Superior. Ocean Eng. 36(15–16): 1175–1181. 10.1016/j.oceaneng.2009.08.008.Etemad-ShahidiA.MahjoobiJ.2009Comparison between M5′ model tree and neural networks for prediction of significant wave height in Lake SuperiorOcean Eng.3615–161175118110.1016/j.oceaneng.2009.08.008Open DOISearch in Google Scholar

Herman, A., Kaiser, R. & Niemayer, H.D. (2009). Wind-wave variability in shallow tidal sea – Spectral modelling combined with neural network methods. Coastal Eng. 56: 759–772.HermanA.KaiserR.NiemayerH.D.2009Wind-wave variability in shallow tidal sea – Spectral modelling combined with neural network methodsCoastal Eng5675977210.1016/j.coastaleng.2009.02.007Search in Google Scholar

Herman-Iżycki, L., Jakubiak, B., Nowiński, K. & Niezgódka, B. (2002). UMPL – the Numerical Weather Prediction System for Operational Applications. In B. Jakubiak (Ed.), Research works based on the ICMs UMPL numerical weather prediction system results (pp. 14–27). Warsaw: Publ. ICM.Herman-IżyckiL.JakubiakB.NowińskiK.NiezgódkaB.2002UMPL – the Numerical Weather Prediction System for Operational ApplicationsJakubiakB.Research works based on the ICMs UMPL numerical weather prediction system results1427WarsawPubl. ICMSearch in Google Scholar

Hünicke, B., Zorita, Z., Soomere, T., Madsen, K.S., Johansson, M. et al. (2015). Recent Change – Sea Level and Wind Waves. In The BACC II Author Team (Eds.), Second Assessment of Climate Change for the Baltic Sea Basin (pp. 155–185). Cham, Heidelberg, New York, Dordrecht, London: Springer International Publishing. 10.1007/978-3-319-16006-1_9.HünickeB.ZoritaZ.SoomereT.MadsenK.S.JohanssonM.2015Recent Change – Sea Level and Wind WavesThe BACC II Author Team Second Assessment of Climate Change for the Baltic Sea Basin155185Cham, Heidelberg, New York, Dordrecht, LondonSpringer International Publishing10.1007/978-3-319-16006-1_9Open DOISearch in Google Scholar

Jang, R.J.-S. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 23(3): 665–685.JangR.J.-S.1993ANFIS: Adaptive-Network-Based Fuzzy Inference SystemIEEE Trans. Syst. Man Cybern.23366568510.1109/21.256541Search in Google Scholar

Jang, R. J.-S. & Sun, C.-T. (1993). Functional equivalence between Radial Basis Functions and Fuzzy Inference Systems. IEEE Trans. on Neural Networks. 4(1): 156–159. 10.1109/72.182710.JangR. J.-S.SunC.-T.1993Functional equivalence between Radial Basis Functions and Fuzzy Inference SystemsIEEE Trans. on Neural Networks.4115615910.1109/72.18271018267716Open DOISearch in Google Scholar

Kelpšaitė, L. Dailidiene, I. & Soomere, T. (2011). Changes in wave dynamics at the south-eastern coast of the Baltic Proper during 1993–2008. Boreal Environ. Res. 16(A): 220–232.KelpšaitėL.DailidieneI.SoomereT.2011Changes in wave dynamics at the south-eastern coast of the Baltic Proper during 1993–2008Boreal Environ. Res.16A220232Search in Google Scholar

Komen, G., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S. et al. (1994). Dynamics and modelling of ocean waves. Cambridge: Cambridge University Press.KomenG.CavaleriL.DonelanM.HasselmannK.HasselmannS.1994Dynamics and modelling of ocean waves.CambridgeCambridge University Press10.1017/CBO9780511628955Search in Google Scholar

Krishna Kumar, N., Savitha, R. & Al Mamun, A. (2017). Regional ocean wave height prediction using sequential learning neural networks. Ocean Eng. 129: 605–612. 10.1016/j.oceaneng.2016.10.033.Krishna KumarN.SavithaR.Al MamunA.2017Regional ocean wave height prediction using sequential learning neural networksOcean Eng12960561210.1016/j.oceaneng.2016.10.033Open DOISearch in Google Scholar

Ljung, L. (1987). System identification: Theory for user. Englewood Cliffs, USA: Pretince-Hall.LjungL.1987System identification: Theory for user.Englewood Cliffs, USAPretince-HallSearch in Google Scholar

Londhe, S.S., Dixit, P.R., Balakrishnan Nair, T.M., Sirisha, P. & Jain, R. (2016). A Coupled Numerical and Artificial Neural Network Model for Improving Location Specific Wave Forecast. Appl. Ocean Res. 59: 483–491. 10.1016/j.apor.2016.07.004.LondheS.S.DixitP.R.Balakrishnan NairT.M.SirishaP.JainR.2016A Coupled Numerical and Artificial Neural Network Model for Improving Location Specific Wave Forecast. ApplOcean Res5948349110.1016/j.apor.2016.07.004Open DOISearch in Google Scholar

Mahjoobi, L., Etemad-Shahidi, A. & Kazeminezhad, M.H. (2008). Hindcasting wave parameters using different soft computing methods. Appl. Ocean Res. 30: 28–36.MahjoobiL.Etemad-ShahidiA.KazeminezhadM.H.2008Hindcasting wave parameters using different soft computing methodsAppl. Ocean Res30283610.1016/j.apor.2008.03.002Search in Google Scholar

Mahjoobi, J. & Mosabbeb, E.A. (2009). Prediction of significant wave height using regressive support vector machines. Ocean Eng. 36(5): 339–347. 10.1016/j.oceaneng.2009.01.001.MahjoobiJ.MosabbebE.A.2009Prediction of significant wave height using regressive support vector machinesOcean Eng.36533934710.1016/j.oceaneng.2009.01.001Open DOISearch in Google Scholar

Massel, S.R. (1996). Ocean surface waves: their physics and prediction. Singapore: World Scientific Publishing.MasselS.R.1996Ocean surface waves: their physics and prediction.SingaporeWorld Scientific Publishing10.1142/9789812795908Search in Google Scholar

Malekmohamadi, I., Bazargan-Lari, M.R., Kerachian, R., Nikoo, M.R. & Fallahnia, M. (2011). Evaluating the efficacy of SVMs, BNs, ANNs and ANFIS in wave height prediction. Ocean. Eng. 38: 487–497.MalekmohamadiI.Bazargan-LariM.R.KerachianR.NikooM.R.FallahniaM.2011Evaluating the efficacy of SVMs, BNs, ANNs and ANFIS in wave height predictionOcean. Eng3848749710.1016/j.oceaneng.2010.11.020Search in Google Scholar

Özger, M. (2010). Significant wave height forecasting using wavelet fuzzy logic approach. Ocean Eng. 37: 1443–1451.ÖzgerM.2010Significant wave height forecasting using wavelet fuzzy logic approachOcean Eng371443145110.1016/j.oceaneng.2010.07.009Search in Google Scholar

Räämet, A., Suursaar, Ü., Kullas, T. & Soomere, T. (2009). Reconsidering uncertainties of wave conditions in the coastal areas of the Northern Baltic Sea. J. Coast. Res. 56: 257–261.RäämetA.SuursaarÜ.KullasT.SoomereT.2009Reconsidering uncertainties of wave conditions in the coastal areas of the Northern Baltic SeaJ. Coast. Res56257261Search in Google Scholar

Reikard, G. & Rogers, E.W. (2011). Forecasting ocean waves: Comparing a physics-based model with statistical models. Coastal Eng. 58: 409–416. 10.1016/j.coastaleng.2010.12.001.ReikardG.RogersE.W.2011Forecasting ocean waves: Comparing a physics-based model with statistical modelsCoastal Eng5840941610.1016/j.coastaleng.2010.12.001Open DOISearch in Google Scholar

Reistad, M., Breivik, Ø., Haakestad, H., Aarnes, O.J., Furenik, B.R. et al. (2011). A high resolution hindcast of wind and waves for the North Sea, the Norwegian Sea and the Barents Sea. Journ. Geophys. Res. 116: C05019. 10.1029/2010JC006402.ReistadM.BreivikØ.HaakestadH.AarnesO.J.FurenikB.R.2011A high resolution hindcast of wind and waves for the North Sea, the Norwegian Sea and the Barents SeaJourn. Geophys. Res.116C0501910.1029/2010JC006402Open DOISearch in Google Scholar

Ris, R.C, Holthuijsen, L.H. & Booij, N. (1999). A third-generation wave model for coastal regions 2. Verification. Journ. Geophys. Res. 104(C4): 7667–7681.RisR.CHolthuijsenL.H.BooijN.1999A third-generation wave model for coastal regions 2. VerificationJourn. Geophys. Res.104C47667768110.1029/1998JC900123Search in Google Scholar

Różyński, G. (2010). Long-term evolution of Baltic Sea wave climate near a coastal segment in Poland; its drivers and impacts. Ocean Eng. 37: 186–199.RóżyńskiG.2010Long-term evolution of Baltic Sea wave climate near a coastal segment in Poland; its drivers and impactsOcean Eng3718619910.1016/j.oceaneng.2009.11.008Search in Google Scholar

Soomere, T. (2008). Extreme and decadal variations of the northern Baltic Sea wave conditions. In E. Pelinovsky & C. Kharif (Eds.), Extreme Ocean Waves (pp. 139–157). Amsterdam, Springer Netherlands.SoomereT.2008Extreme and decadal variations of the northern Baltic Sea wave conditionsPelinovskyE.KharifC.Extreme Ocean Waves139157AmsterdamSpringer Netherlands10.1007/978-1-4020-8314-3_8Search in Google Scholar

Soomere, T. & Räämet, A. (2011a). Long-term spatial variations in the Baltic Sea wave fields. Ocean Sci. 7: 141–150.SoomereT.RäämetA.2011aLong-term spatial variations in the Baltic Sea wave fieldsOcean Sci714115010.5194/os-7-141-2011Search in Google Scholar

Soomere, T. & Räämet, A. (2011b). Spatial patterns of the wave climate in the Baltic Proper and the Gulf of Finland. Oceanologia 53: 335–371.SoomereT.RäämetA.2011bSpatial patterns of the wave climate in the Baltic Proper and the Gulf of FinlandOceanologia.5333537110.5697/oc.53-1-TI.335Search in Google Scholar

Soomere, T., Weisse, R. & Behrens, A. (2012). Wave climate in the Arkona Basin, the Baltic Sea. Ocean Sci. 8: 287–300.SoomereT.WeisseR.BehrensA.2012Wave climate in the Arkona Basin, the Baltic SeaOcean Sci828730010.5194/os-8-287-2012Search in Google Scholar

Swail, V.R. & Cox, A.T. (2000). On the use of NCEP-NCAR Reanalysis surface marine wind fields for a long term North Atlantic wave hindcasts. J. Atmospheric Ocean. Technol. 17: 532–545.SwailV.R.CoxA.T.2000On the use of NCEP-NCAR Reanalysis surface marine wind fields for a long term North Atlantic wave hindcastsJ. Atmospheric Ocean. Technol1753254510.1175/1520-0426(2000)017<0532:OTUONN>2.0.CO;2Search in Google Scholar

Sylaios, G., Bouchette, F., Tsihrintzis, V.A. & Denamiel, C. (2009). A fuzzy inference system for wind-wave modelling. Ocean Eng. 36(17–18 ): 1358–1365.SylaiosG.BouchetteF.TsihrintzisV.A.DenamielC.2009A fuzzy inference system for wind-wave modellingOcean Eng.3617–181358136510.1016/j.oceaneng.2009.08.016Search in Google Scholar

Takagi, R. & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. Syst. Man Cybern. 15: 116–132.TakagiR.SugenoM.1985Fuzzy identification of systems and its applications to modelling and controlIEEE Trans. Syst. Man Cybern1511613210.1109/TSMC.1985.6313399Search in Google Scholar

The WAMDI Group: Hasselmann, S., Hasslemann, K., Bauer, E., Janssen, P.A.E.M., Komen, J.G. et al. (1988). The WAM model – a third generation ocean wave prediction model. J. Phys. Oceanogr. 18: 1775–1810.The WAMDI GroupHasselmannS.HasslemannK.BauerE.JanssenP.A.E.M.KomenJ.G.1988The WAM model – a third generation ocean wave prediction modelJ. Phys. Oceanogr181775181010.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2Search in Google Scholar

The WISE Group: Cavaleri, L., Alves, J.-H., Ardhuin, F., Babanin, A., Banner, M. et al. (2007). Wave modelling – The state of art. Progr. Oceanogr. 75: 603–674.The WISE GroupCavaleriL.AlvesJ.-H.ArdhuinF.BabaninA.BannerM.2007Wave modelling – The state of artProgr. Oceanogr7560367410.1016/j.pocean.2007.05.005Search in Google Scholar

Tolman, H.L. (2002): Testing of WAVEWATCH III Version 2.22 in NCEP as NWW3 Ocean Wave Model Suite. NOAA/NWS/NCEP/OMB Technical Note Nr. 214.TolmanH.L.2002Testing of WAVEWATCH III Version 2.22 in NCEP as NWW3 Ocean Wave Model Suite.NOAA/NWS/NCEP/OMB Technical Note Nr. 214Search in Google Scholar

USACE. (2008). Coast Engineering Manual. USA Corps of Engineers.USACE2008Coast Engineering Manual. USA Corps of Engineers.Search in Google Scholar

Zaitseva-Pärnaste, I., Soomere, T. & Tribštok, O. (2011). Spatial variations in wave climate change in the eastern part of the Baltic Sea. Journ. Coastal Res. 64: 195–199.Zaitseva-PärnasteI.SoomereT.TribštokO.2011Spatial variations in wave climate change in the eastern part of the Baltic SeaJourn. Coastal Res64195199Search in Google Scholar

Zanaganeh, M., Mousavi, S.J. & Etemad-Shahidi, A.F. (2009). A hybrid genetic algorithm – adaptive network-based fuzzy inference system in prediction of wave parameters. Eng. Appl. Artif. Intel. 22: 1194–1202.ZanaganehM.MousaviS.J.Etemad-ShahidiA.F.2009A hybrid genetic algorithm – adaptive network-based fuzzy inference system in prediction of wave parametersEng. Appl. Artif. Intel221194120210.1016/j.engappai.2009.04.009Search in Google Scholar

eISSN:
1897-3191
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Chemistry, other, Geosciences, Life Sciences