1. bookVolume 62 (2017): Edition 1 (March 2017)
Détails du magazine
License
Format
Magazine
eISSN
1508-5791
Première parution
25 Mar 2014
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Degradation and detoxification of 2-chlorophenol aqueous solutions using ionizing gamma radiation

Publié en ligne: 04 Mar 2017
Volume & Edition: Volume 62 (2017) - Edition 1 (March 2017)
Pages: 61 - 68
Reçu: 03 Apr 2016
Accepté: 25 Jul 2016
Détails du magazine
License
Format
Magazine
eISSN
1508-5791
Première parution
25 Mar 2014
Périodicité
4 fois par an
Langues
Anglais

1. Czaplicka, M. (2004). Sources and transformations of chlorophenols in the natural environment. Sci. Total Environ., 322(1/3), 21–39. DOI: 10.1016/j.scitotenv.2003.09.015.10.1016/j.scitotenv.2003.09.015Search in Google Scholar

2. Michałowicz, J., & Duda, W. (2007). Phenols – sources and toxicity. Pol. J. Environ. Stud., 16(3), 347–362. DOI: 10.105 PJ 12301485.Search in Google Scholar

3. Igbinosa, E. O., Odjadjare, E. E., Chigor, V. N., Igbinosa, I. H., Emoghene, A. O., Ekhaise, F. O., & Idemudia, O. G. (2013). Toxicological profile of chlorophenols and their derivatives in the environment: The public health perspective. Sci. World J., 2013, 1–11. DOI: Artn 460215\rDoi 10.1155/2013/460215.10.1155/2013/460215Search in Google Scholar

4. Boulding, J. R., & Ginn, J. S. (2004). Practical handbook of soil, vadose zone, and ground-water contamination: Assessment, prevention, and remediation (2nd ed.). Boca Raton: Lewis Publishers.Search in Google Scholar

5. Ettala, M., Koskela, J., & Kiesila, A. (1992). Removal of chlorophenols in a municipal sewage-treatment plant using activated-sludge. Water Res., 26(6), 797–804. DOI: 10.1016/0043-1354(92)90011-r.10.1016/0043-1354(92)90011-RSearch in Google Scholar

6. Gupta, V. K., Carrott, P. J. M., Ribeiro Carrott, M. M. L., & Suhas. (2009). Low-cost adsorbents: Growing approach to wastewater treatment – a review. Crit. Rev. Environ. Sci. Technol., 39(10), 783–842. DOI: 10.1080/10643380801977610.10.1080/10643380801977610Search in Google Scholar

7. Henze, M. (2008). Biological wastewater treatment: Principles, modelling and design. UK: IWA Publishing.Search in Google Scholar

8. Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N., & Kroiss, H. (2005). Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res., 39(19), 4797–4807. DOI: 10.1016/j.watres.2005.09.015.10.1016/j.watres.2005.09.015Search in Google Scholar

9. Cheremisinoff, N. P. (2002). Handbook of water and wastewater treatment technologies. Boston: Butterworth-Heinemann.Search in Google Scholar

10. Andreozzi, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today, 53(1), 51–59. DOI: 10.1016/S0920-5861(99)00102-9.10.1016/S0920-5861(99)00102-9Search in Google Scholar

11. Zhao, X. B., Wang, L., & Liu, D.-H. (2007). Effect of several factors on peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis. J. Chem. Technol. Biotechnol., 82(5), 1115–1121. DOI: 10.1002/jctb.1775.10.1002/jctb.1775Search in Google Scholar

12. Klavarioti, M., Mantzavinos, D., & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int., 35(2), 402–417. DOI: 10.1016/j.envint.2008.07.009.10.1016/j.envint.2008.07.00918760478Search in Google Scholar

13. Badawy, M. I., Ghaly, M. Y., & Gad-Allah, T. A. (2006). Advanced oxidation processes for the removal of organophosphorus pesticides from wastewater. Desalination, 194(1/3), 166–175. DOI: 10.1016/j.desal.2005.09.027.10.1016/j.desal.2005.09.027Search in Google Scholar

14. Keen, O., & Linden, K. G. (2013). Degradation of antibiotic activity during UV/H2O2 advanced oxidation and photolysis in wastewater effluent. Environ. Sci. Technol., 47(22), 13020–13030. DOI: 10.1021/es402472x.10.1021/es402472x24134515Search in Google Scholar

15. Azbar, N., Yonar, T., & Kestioglu, K. (2004). Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere, 55(1), 35–43. DOI: 10.1016/j.chemosphere.2003.10.046.10.1016/j.chemosphere.2003.10.046Search in Google Scholar

16. Esplugas, S., Bila, D. M., Krause, L. G. T., & Dezotti, M. (2007). Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J. Hazard. Mater., 149(3), 631–642. DOI: 10.1016/j.jhazmat.2007.07.07310.1016/j.jhazmat.2007.07.073Search in Google Scholar

17. Basfar, A. A., Mohamed, K. A., Al-Abduly, A. J., Al-Kuraiji, T. S., & Al-Shahrani, A. A. (2007). Degradation of diazinon contaminated waters by ionizing radiation. Radiat. Phys. Chem., 76(8/9), 1474–1479. DOI: 10.1016/j.radphyschem.2007.02.055.10.1016/j.radphyschem.2007.02.055Search in Google Scholar

18. Basfar, A. A., Mohamed, K. A., Al-Abduly, A. J., & Al-Shahrani, A. A. (2009). Radiolytic degradation of atrazine aqueous solution containing humic substances. Ecotox. Environ. Safe., 72(3), 948–953. DOI: 10.1016/j.ecoenv.2008.05.006.10.1016/j.ecoenv.2008.05.006Search in Google Scholar

19. Basfar, A. A., Khan, H. M., Al-Shahrani, A. A., & Cooper, W. J. (2005). Radiation induced decomposition of methyl tert-butyl ether in water in presence of chloroform: Kinetic modelling. Water Res., 39(10), 2085–2095. DOI: 10.1016/j.watres.2005.02.019.10.1016/j.watres.2005.02.019Search in Google Scholar

20. Basfar, A. A., Khan, H. M., & Al-Shahrani, A. A. (2005). Trihalomethane treatment using gamma irradiation: Kinetic modeling of single solute and mixtures. Radiat. Phys. Chem., 72(5), 555–563. DOI: 10.1016/j.radphyschem.2004.04.137.10.1016/j.radphyschem.2004.04.137Search in Google Scholar

21. Pera-Titus, M., García-Molina, V., Baños, M. A., Giménez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: A general review. Appl. Catal. B-Environ., 47(4), 219–256. DOI: 10.1016/j.apcatb.2003.09.010.10.1016/j.apcatb.2003.09.010Search in Google Scholar

22. Taghipour, F., & Evans, G. J. (1997). Radiolytic dechlorination of chlorinated organics. Radiat. Phys. Chem., 49(2), 257–264. DOI: 10.1016/S0969-806X(96)00065-5.10.1016/S0969-806X(96)00065-5Search in Google Scholar

23. He, Y., Liu, J., Lu, Y., & Wu, J. (2002). Gamma radiation treatment of pentachlorophenol, 2,4-dichlorophenol and 2-chlorophenol in water. Radiat. Phys. Chem., 65(4/5), 565–570. DOI: 10.1016/S0969-806X(02)00364-X.10.1016/S0969-806X(02)00364-XSearch in Google Scholar

24. Klanova, J., Klan, P., Heger, D., & Holoubek, I. (2003). Comparison of the effects of UV, H2O2/UV and γ-irradiation processes on frozen and liquid water solutions of monochlorophenols. Photochem. Photobiol. Sci., 2(10), 1023–1031. DOI: 10.1039/b303483F.10.1039/B303483F14606758Search in Google Scholar

25. Shim, S. B., Jo, H. J., & Jung, J. (2009). Toxicity identification of gamma-ray treated phenol and chlorophenols. J. Radioanal. Nucl. Chem., 280(1), 41–46. DOI: 10.1007/s10967-008-7388-z.10.1007/s10967-008-7388-zSearch in Google Scholar

26. Trojanowicz, M., Chudziak, A., & Bryl-Sandelewska, T. (1997). Use of reversed-phase HPLC with solid-phase extraction for monitoring of radiolytic degradation of chlorophenols for environmental protection. J. Radioanal. Nucl. Chem., 224(1/2), 131–136. DOI: 10.1007/BF02034625.10.1007/BF02034625Search in Google Scholar

27. Miller, A. (2000). Techniques for high dose dosimetry in industry, agriculture and medicine. Radiat. Phys. Chem., 58(3), 305. DOI: 10.1016/S0969-806X(99)00513-7.10.1016/S0969-806X(99)00513-7Search in Google Scholar

28. Jankowska, A., Biesaga, M., Drzewicz, P., Trojanowicz, M., & Pyrzyńska, K. (2004). Chromatographic separation of chlorophenoxy acid herbicides and their radiolytic degradation products in water samples. Water Res., 38(14/15), 3259–3264. DOI: 10.1016/j.watres.2004.03.032.10.1016/j.watres.2004.03.032Search in Google Scholar

29. Lewins, J., & Becker, M. (1999). Advances in nuclear science and technology. New York: Springer.Search in Google Scholar

30. Weihua, S., Zheng, Z., Rami, A. S., Tao, Z., & Desheng, H. (2002). Degradation and detoxification of aqueous nitrophenol solutions by electron beam irradiation. Radiat. Phys. Chem., 65(4/5), 559–563. DOI: 10.1016/S0969-806X(02)00365-1.10.1016/S0969-806X(02)00365-1Search in Google Scholar

31. Borrely, S. I., Sampa, M. H. O., Pedroso, C. B., Oikawa, H., Silveira, C. G., Cherbakian, E. H., & Santos, M. C. F. (2000). Radiation processing of wastewater evaluated by toxicity assays. Radiat. Phys. Chem., 57(3/6), 507–511. DOI: 10.1016/S0969-806X(99)00418-1.10.1016/S0969-806X(99)00418-1Search in Google Scholar

32. Steinberg, S. M., Poziomek, E. J., Engelmann, W. H., & Rogers, K. R. (1995). A review of environmental applications of bioluminescence measurements. Chemosphere, 30(11), 2155–2197. DOI: 10.1016/0045-6535(95)00087-O.10.1016/0045-6535(95)00087-OSearch in Google Scholar

33. Zona, R., Schmid, S., & Solar, S. (1999). Detoxification of aqueous chlorophenol solutions by ionizing radiation. Water Res., 33(5), 1314–1319. DOI: 10.1016/S00431354(98)00319-4.Search in Google Scholar

34. Yang, R., Wang, M., Shen, Z., Wang, W., Ma, H., & Gu, J. (2007). The degradation and mineralization of 4-chlorophenol in aqueous solutions by electron beam irradiation in the presence of TiO2 nanoparticles. Radiat. Phys. Chem., 76(7), 1122–1125. DOI: 10.1016/j.radphyschem.2006.10.008.10.1016/j.radphyschem.2006.10.008Search in Google Scholar

35. Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions. Adv. Environ. Res., 8(3/4), 501–551. DOI: 10.1016/S1093-0191(03)00032-7.10.1016/S1093-0191(03)00032-7Search in Google Scholar

36. Schmid, S., Krajnik, P., Quint, R. M., & Solar, S. (1997). Degradation of monochlorophenols by γ-irradiation. Radiat. Phys. Chem., 50(5), 493–502. DOI: 10.1016/S0969-806X(97)00075-3.10.1016/S0969-806X(97)00075-3Search in Google Scholar

37. Torun, M., Abbasova, D., Solpan, D., & Guven, O. (2014). Caffeine degradation in water by gamma irradiation, ozonation and ozonation/gamma irradiation. Nukleonika, 59(1), 25–35. DOI: 10.2478/nuka-2014-0004.10.2478/nuka-2014-0004Search in Google Scholar

38. Getoff, N., & Solar, S. (1986). Radiolysis and pulse radiolysis of chlorinated phenols in aqueous solutions. Int. J. Radiat. Appl. Instrum. Part C-Radiat. Phys. Chem., 28(5/6), 443–450. DOI: 10.1016/1359-0197(86)90165-7.10.1016/1359-0197(86)90165-7Search in Google Scholar

39. Parvez, S., Venkataraman, C., & Mukherji, S. (2006). A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ. Int., 32(2), 265–268. DOI: 10.1016/j.envint.2005.08.022.10.1016/j.envint.2005.08.022Search in Google Scholar

40. Stafford, U., Gray, K. A., & Kamat, P. V. (1994). Radiolytic and TiO2-assisted photocatalytic degradation of 4-chlorophenol. A comparative study. J. Phys. Chem., 98(25), 6343–6351. DOI: 10.1021/j100076a019.10.1021/j100076a019Search in Google Scholar

41. Trojanowicz, M., Drzewicz, P., Pańta, P., Gluszewski, W., Nalecz-Jawecki, G., Sawicki, J., Szewczyńska, M. (2002). Radiolytic degradation and toxicity changes in γ-irradiated solutions of 2,4-dichlorophenol. Radiat. Phys. Chem., 65(4/5), 357–366. DOI: 10.1016/S0969-806X(02)00336-5.10.1016/S0969-806X(02)00336-5Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo