Accès libre

Thermal stability of the krypton Hall effect thruster

À propos de cet article

Citez

1. Morozov, A. I., & Savelyev, V. V. (2000). Fundamentals of stationary plasma thruster theory. Rev. Plasma Phys., 21, 203–391.10.1007/978-1-4615-4309-1_2Search in Google Scholar

2. Kim, V., Popov, G., Arkhipov, B., Murashko, V., Gorshkov, O., Koroteyev, A., Garkusha, V., Semenkin, A., & Tverdokhlebov, S. (2001). Electric propulsion activity in Russia. In Proceedings of the 27th International Electric Propulsion Conference, Pasadena, CA, USA (paper 05).Search in Google Scholar

3. European Space Agency. (2009, August 1). SMART-1 overview. Retrieved from www.esa.int/Our_Activities/Space_Science/SMART-12.Search in Google Scholar

4. Zhurin, V. V., Kaufman, H. R., & Robinson, R. S. (1999). Physics of closed drift thrusters. Plasma Sources Sci. Technol., 8, R1–R20.10.1088/0963-0252/8/1/021Search in Google Scholar

5. Goebel, D. M., & Katz, I. (2008). Fundamentals of electric propulsion: Ion and Hall Thrusters. Hoboken, New Jersey: Wiley.10.1002/9780470436448Search in Google Scholar

6. Ahedo, E., & Gallardo, J. M. (2003). Scaling down Hall thrusters. In Proceedings of the 28th International Electric Propulsion Conference, Toulouse, France (paper 104).Search in Google Scholar

7. Dannenmayer, K., & Mazouffre, S. (2011). Elementary scaling relations for Hall Effect Thrusters. J. Propul. Power, 27, 236–245.10.2514/1.48382Search in Google Scholar

8. Shagayda, A. A. (2013). On scaling of Hall Effect Thrusters. In Proceedings of the 33rd International Electric Propulsion Conference, Washington, D.C., USA (paper 56).Search in Google Scholar

9. Kurzyna, J., & Daniłko, D. (2011). IPPLM Hall Effect Thruster – design guidelines and preliminary tests. In Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany (paper 221).Search in Google Scholar

10. Kurzyna, J., Barral, S., Daniłko, D., Miedzik, J., Bulit, A., & Dannenmayer, K. (2014). First tests of the KLIMT Thruster with Xenon propellant at the ESA Propulsion Laboratory, Space Propulsion Conference, Cologne, Germany.Search in Google Scholar

11. Makela, J. M., Washeleski, R. L., Massey, D. R., King, L. B., & Hopkins M. A. (2009). Development of a magnesium and zinc Hall-Effect Thruster. In Proceedings of the 31st International Electric Propulsion Conference, Ann Arbor, Michigan, USA (paper 107).Search in Google Scholar

12. Scharfe, D. B. (2009). Alternative Hall thruster propellants krypton and bismuth: Simulated performance and characterization. Ph.D. thesis, Stanford University.Search in Google Scholar

13. Nakles, M. R., William Jr., A. H., Delgado, J. J., & Corey R. L. (2011). A performance comparison of xenon and krypton propellant on an SPT-100 Hall Thruster. In Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany (paper 003).10.21236/ADA549666Search in Google Scholar

14. Kim, V., Popov, G., Kozlov, V., Skrylnikov, A., & Grdlichko, D. (2001). Investigation of SPT performance and particularities of its operation with Kr and Kr/Xe mixtures. In Proceedings of the 27th International Electric Propulsion Conference, Pasadena, CA, USA (paper 065).Search in Google Scholar

15. Linnell, J. A., & Gallimore, A. D. (2005). Efficiency analysis of a Hall Thruster operating with krypton and xenon. In Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition, Tucson, Arizona, USA (paper 3683).10.2514/6.2005-3683Search in Google Scholar

16. CORDIS. (2013). Final report to FP7 European project HiPER (High Power Electric propulsion: A roadmap for the future). Contract no. 218859. EC Community Research and Development Information Service.Search in Google Scholar

17. Kurzyna, J. (2014). Numerical investigation of the Krypton Large IMpulse Thruster. Phys. Scripta, T161, 014051(4 pp.).10.1088/0031-8949/2014/T161/014051Search in Google Scholar

18. Kurzyna, J., Szelecka, A., Daniłko, D., Barral, S., Dannenmayer, K., Bosch Borras, E., & Schönherr, T. (2016). Testing KLIMT prototypes at IPPLM and ESA Propulsion Laboratories. In Proceedings of Space Propulsion, Rome, Italy.Search in Google Scholar

19. Meeker, D. C. (2010). Finite element method magnetics. Version 4.2 Nov. Build, http://www.femm.info.Search in Google Scholar

20. Barral, S., & Brayer, C. (1997). CRATHER: un code de Conduction-RAdiation THERmique. National Center for Scientific Research, France.Search in Google Scholar

21. Çengel, Y. A. (2002). Heat transfer – a practical approach (2nd ed.). Boston: McGraw Hill.Search in Google Scholar

22. Włodarski, Z. (2006). Analytical description of magnetization curves. Phys. B-Condens. Matter, 373, 323–327.10.1016/j.physb.2005.12.242Search in Google Scholar

23. Włodarski, Z., & Włodarska, J. (1998). Analytical approximation of the dependence of magnetic material properties on temperature. COMPEL, 402–406.10.1108/03321649810203350Search in Google Scholar

24. Ceramawire. (2011). Ceramawire High Temperature Magnet Wire Technical Specs. http://www.ceramawire.com/technical-information.shtml#2.Search in Google Scholar

25. Longmier, B. W., Reid, B. M., Gallimore, A. D., Chang-Díaz, F. R., Squire, J. P., Glover, T. W., Chavers, G., & Bering III, E. A. (2009). Validating a plasma momentum flux sensor to an inverted pendulum thrust stand. J. Propul. Power, 25, 746–752.10.2514/1.35706Search in Google Scholar

eISSN:
0029-5922
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Chimie, Chimie nucléaire, Physique, Astronomie et astrophysique, autres