À propos de cet article

Citez

1. Kabouzi, Y., Moisan, M., Rostaing, J. C., Trassy, C., Guerin, D., Kéroack, D., & Zakrzewski, Z. (2003). Abatement of perfluorinated compounds using microwave plasmas at atmospheric pressure. J. Appl. Phys., 93(12), 9483-9496. DOI: 10.1063/1.1574595.10.1063/1.1574595Search in Google Scholar

2. Moisan, M., & Pelletier, J. (1992). Microwave excited plasmas. Amsterdam, Holland: Elsevier.Search in Google Scholar

3. Mizeraczyk, J., Dors, M., Jasiński, M., Hrycak, B., & Czylkowski, D. (2013). Atmospheric pressure low-power microwave microplasma source for deactivation of microorganisms. Eur. Phys. J. Appl. Phys., 61, 24309. DOI: 10.1051/epjap/2012120405.10.1051/epjap/2012120405Search in Google Scholar

4. Czylkowski, D., Hrycak, B., Jasiński, M., Dors, M., & Mizeraczyk, J. (2013). Atmospheric pressure microwave microplasma microorganisms deactivation. Surf. Coat. Technol., 234, 114-119. DOI: 10.1016/j. surfcoat.2013.04.010.Search in Google Scholar

5. Chen, H. H., Weng, C. C., Liao, J. D., Chen, K. M., & Hsu, B. W. (2009). Photo-resist stripping process using atmospheric pressure microplasma system. J. Phys. D-Appl. Phys., 42(13), 1-8. DOI: 10.1088/0022-3727/42/13/135201.10.1088/0022-3727/42/13/135201Search in Google Scholar

6. Denes, F. S., & Manolache, S. (2004). Macromolecular plasma-chemistry: an emerging fi eld of polymer science. Prog. Polym. Sci., 29(8), 815-885. DOI: 10.1016/ j.progpolymsci.2004.05.001.10.1016/j.progpolymsci.2004.05.001Search in Google Scholar

7. Chu, P. K., Chen, J. Y., Wang, L. P., & Huang, N. (2002). Plasma-surface modifi cation of biomaterials. Mater. Sci. Eng. R, 36(5/6), 143-206. DOI: 10.1016/ S0927-796X(02)00004-9.10.1016/S0927-796X(02)00004-9Search in Google Scholar

8. Morent, R., de Geyter, N., Verschuren, J., de Clerck, K., Kiekens, P., & Leys, C. (2008). Non-thermal plasma treatment of textiles. Surf. Coat. Technol., 202(14), 3427-3449. DOI: 10.1016/j.surfcoat.2007.12.027.10.1016/j.surfcoat.2007.12.027Search in Google Scholar

9. Tendero, C., Tixier, C., Tristant, P., Desmaison, J., & Leprince, P. (2006). Atmospheric pressure plasmas: A review. Spectrochim. Acta Part B, 61(1), 02-30. DOI: 10.1016/j.sab.2005.10.003.10.1016/j.sab.2005.10.003Search in Google Scholar

10. Jasiński, M., Mizeraczyk, J., Zakrzewski, Z., Ohkubo, T., & Chang, J. S. (2002). CFC-11 destruction by microwave plasma torch generated atmospheric-pressure nitrogen discharge. J. Phys. D-Appl. Phys., 35(18), 2274-2280. DOI: 10.1088/0022-3727/35/18/308.10.1088/0022-3727/35/18/308Search in Google Scholar

11. Baeva, M., Gier, H., Pott, A., Uhlenbusch, J., Hoschele, J., & Steinwandel, J. (2002). Pulsed microwave discharge at atmospheric pressure for NOx decomposition. Plasma Sources Sci. Technol., 11(1), 1-9. DOI: 10.1088/0963-0252/11/1/301.10.1088/0963-0252/11/1/301Search in Google Scholar

12. Jasiński, M., Dors, M., & Mizeraczyk, J. (2009). Destruction of freon HFC-134a using a nozzleless microwave plasma source. Plasma Chem. Plasma Process., 29(5), 363-372. DOI: 10.1007/s11090-009-9183-1.10.1007/s11090-009-9183-1Search in Google Scholar

13. Mizeraczyk, J., Jasiński, M., Nowakowska, H., & Dors, M. (2012) Studies of atmospheric-pressure microwave plasmas used for gas processing. Nukleonika, 57(2), 241-247Search in Google Scholar

14. Jasiński, M., Czylkowski, D., Hrycak, B., Dors, M., & Mizeraczyk, J. (2013). Atmospheric pressure microwave plasma source for hydrogen production. Int. J. Hydrog. Energy, 38(26), 11473-11483. DOI: 10.1016/j.ijhydene.2013.05.105.10.1016/j.ijhydene.2013.05.105Search in Google Scholar

15. Mizeraczyk, J., Urashima, K., Jasiński, M., & Dors, M. (2014). Hydrogen production from gaseous fuels by plasmas - A review. Int. J. Plasma Env. Sci. Technol., 8(2), 89-97.Search in Google Scholar

16. Hrycak, B., Czylkowski, D., Miotk, R., Dors, M., Jasiński, M., & Mizeraczyk, J. (2014). Application of atmospheric pressure microwave plasma source for hydrogen production from ethanol. Int. J. Hydrog. Energy, 39(26), 14184-14190. DOI: 10.1016/j. ijhydene.2014.02.160.Search in Google Scholar

17. Hrycak, B., Czylkowski, D., Miotk, R., Dors, M., Jasinski, M., & Mizeraczyk, J. (2015). Hydrogen production from ethanol in nitrogen microwave plasma at atmospheric pressure. Open Chem., 13(1), 317-324. DOI: 10.1515/chem-2015-0039.10.1515/chem-2015-0039Search in Google Scholar

18. Czylkowski, D., Hrycak, B., Miotk, R., Jasiński, M., Dors, M., & Mizeraczyk, J. (2015). Hydrogen production by conversion of ethanol using atmospheric pressure microwave plasmas. Int. J. Hydrog. Energy, 40(40), 14039-14044. DOI: 10.1016/j. ijhydene.2015.06.101.Search in Google Scholar

19. Randolph, K. (2013). Hydrogen production. In Hydrogen and Fuel Cells - Annual Merit Review and Peer Evaluation Meeting, May 13-17, 2013, Arlington, Virginia, USA. U.S. Department of Energy (DOE).Search in Google Scholar

20. Bromberg, L., Cohn, D. R., & Rabinovich, A. (1997). Plasma reformer-fuel cell system for decentralized power applications. Int. J. Hydrog. Energy, 22(1), 83-94. DOI: 10.1016/0360-3199(95)00121-2.10.1016/0360-3199(95)00121-2Search in Google Scholar

21. Bromberg, L., Cohn, D. R., Rabinovich, A., Alexeev, N., Samokhin, A., Ramprasad, R., & Tamhankar, S. (2000). System optimization and cost analysis of plasma catalytic reforming of natural gas. Int. J. Hydrog. Energy, 25(12), 1157-1161. DOI: 10.1016/ S0360-3199(00)00048-3.10.1016/S0360-3199(00)00048-3Search in Google Scholar

22. Sekiguchi, H., & Mori, Y. (2002). Steam plasma reforming using microwave discharge. Thin Solid Films, 435(1/2), 44-48. DOI: 10.1016/S0040-6090(03)00379-1.10.1016/S0040-6090(03)00379-1Search in Google Scholar

23. Liu, K., Song, Ch., & Subramani, V. (2010). Hydrogen and syngas production and purification technologies. Hoboken, New Jersey, USA: John Wiley & Sons, Inc.Search in Google Scholar

eISSN:
0029-5922
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other